1XPB
STRUCTURE OF BETA-LACTAMASE TEM1
Summary for 1XPB
| Entry DOI | 10.2210/pdb1xpb/pdb |
| Descriptor | BETA-LACTAMASE, SULFATE ION (3 entities in total) |
| Functional Keywords | hydrolase, antibiotic resistance, transposable element |
| Biological source | Escherichia coli |
| Total number of polymer chains | 1 |
| Total formula weight | 29038.06 |
| Authors | Fonze, E.,Charlier, P. (deposition date: 1997-01-10, release date: 1997-04-01, Last modification date: 2024-10-23) |
| Primary citation | Fonze, E.,Charlier, P.,To'th, Y.,Vermeire, M.,Raquet, X.,Dubus, A.,Frere, J.M. TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant. Acta Crystallogr.,Sect.D, 51:682-694, 1995 Cited by PubMed Abstract: beta-Lactamases are bacterial enzymes which catalyse the hydrolysis of the beta-lactam ring of penicillins, cephalosporins and related compounds, thus inactivating these antibiotics. The crystal structure of the TEM1 beta-lactamase has been determined at 1.9 A resolution by the molecular-replacement method, using the atomic coordinates of two homologous beta-lactamase refined structures which show about 36% strict identity in their amino-acid sequences and 1.96 A r.m.s. deviation between equivalent Calpha atoms. The TEM1 enzyme crystallizes in space group P2(1)2(1)2(1) and there is one molecule per asymmetric unit. The structure was refined by simulated annealing to an R-factor of 15.6% for 15 086 reflections with I >/= 2sigma(I) in the resolution range 5.0-1.9 A. The final crystallographic structure contains 263 amino-acid residues, one sulfate anion in the catalytic cleft and 135 water molecules per asymmetric unit. The folding is very similar to that of the other known class A beta-lactamases. It consists of two domains, the first is formed by a five-stranded beta-sheet covered by three alpha-helices on one face and one alpha-helix on the other, the second domain contains mainly alpha-helices. The catalytic cleft is located at the interface between the two domains. We also report the crystallographic study of the TEM S235A mutant. This mutation of an active-site residue specifically decreases the acylation rate of cephalosporins. This TEM S235A mutant crystallizes under the same conditions as the wild-type protein and its structure was refined at 2.0 A resolution with an R value of 17.6%. The major modification is the appearance of a water molecule near the mutated residue, which is incompatible with the OG 235 present in the wild-type enzyme, and causes very small perturbations in the interaction network in the active site. PubMed: 15299797DOI: 10.1107/S0907444994014496 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (1.9 Å) |
Structure validation
Download full validation report






