Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

1UUM

Rat dihydroorotate dehydrogenase (DHOD)in complex with atovaquone

Summary for 1UUM
Entry DOI10.2210/pdb1uum/pdb
Related1UUO
DescriptorDIHYDROOROTATE DEHYDROGENASE, FLAVIN MONONUCLEOTIDE, OROTIC ACID, ... (6 entities in total)
Functional Keywordsoxidoreductase, dihydroorotate dehydrogenase, brequinar, atovaquone, nucleotide metabolism, pyrimidine biosynthesis, fad, flavoprotein, transit peptide
Biological sourceRATTUS RATTUS (BLACK RAT, ROOF RAT)
Total number of polymer chains2
Total formula weight83225.05
Authors
Hansen, M.,Le Nours, J.,Johansson, E.,Antal, T.,Ullrich, A.,Loffler, M.,Larsen, S. (deposition date: 2004-01-06, release date: 2004-04-01, Last modification date: 2024-05-08)
Primary citationHansen, M.,Le Nours, J.,Johansson, E.,Antal, T.,Ullrich, A.,Loffler, M.,Larsen, S.
Inhibitor Binding in a Class 2 Dihydroorotate Dehydrogenase Causes Variations in the Membrane-Associated N-Terminal Domain
Protein Sci., 13:1031-, 2004
Cited by
PubMed Abstract: The flavin enzyme dihydroorotate dehydrogenase (DHOD; EC 1.3.99.11) catalyzes the oxidation of dihydroorotate to orotate, the fourth step in the de novo pyrimidine biosynthesis of UMP. The enzyme is a promising target for drug design in different biological and clinical applications for cancer and arthritis. The first crystal structure of the class 2 dihydroorotate dehydrogenase from rat has been determined in complex with its two inhibitors brequinar and atovaquone. These inhibitors have shown promising results as anti-proliferative, immunosuppressive, and antiparasitic agents. A unique feature of the class 2 DHODs is their N-terminal extension, which folds into a separate domain comprising two alpha-helices. This domain serves as the binding site for the two inhibitors and the respiratory quinones acting as the second substrate for the class 2 DHODs. The orientation of the first N-terminal helix is very different in the two complexes of rat DHOD (DHODR). Binding of atovaquone causes a 12 A movement of the first residue in the first alpha-helix. Based on the information from the two structures of DHODR, a model for binding of the quinone and the residues important for the interactions could be defined. His 56 and Arg 136, which are fully conserved in all class 2 DHODs, seem to play a key role in the interaction with the electron acceptor. The differences between the membrane-bound rat DHOD and membrane-associated class 2 DHODs exemplified by the Escherichia coli DHOD has been investigated by GRID computations of the hydrophobic probes predicted to interact with the membrane.
PubMed: 15044733
DOI: 10.1110/PS.03533004
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.3 Å)
Structure validation

227111

건을2024-11-06부터공개중

PDB statisticsPDBj update infoContact PDBjnumon