Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1OAW

OMEGA-AGATOXIN IVA

Summary for 1OAW
Entry DOI10.2210/pdb1oaw/pdb
DescriptorOMEGA-AGATOXIN IVA (1 entity in total)
Functional Keywordsneurotoxin
Biological sourceAgelenopsis aperta
Cellular locationSecreted : P30288
Total number of polymer chains1
Total formula weight5220.39
Authors
Kim, J.I.,Konishi, S.,Iwai, H.,Kohno, T.,Gouda, H.,Shimada, I.,Sato, K.,Arata, Y. (deposition date: 1995-06-28, release date: 1995-10-15, Last modification date: 2024-10-09)
Primary citationKim, J.I.,Konishi, S.,Iwai, H.,Kohno, T.,Gouda, H.,Shimada, I.,Sato, K.,Arata, Y.
Three-dimensional solution structure of the calcium channel antagonist omega-agatoxin IVA: consensus molecular folding of calcium channel blockers.
J.Mol.Biol., 250:659-671, 1995
Cited by
PubMed Abstract: The three-dimensional solution structure of omega-agatoxin IVA, which is a specific blocker of the P-type calcium channel isolated from funnel web spider venom and has a molecular mass of 5.2 kDa, was determined by two dimensional 1H NMR spectroscopy, combined with simulated annealing calculations. On the basis of 563 experimental constraints, including 516 distance constraints obtained from the nuclear Overhauser effect, 21 torsion angle (phi, chi 1) constraints, and 26 constraints associated with hydrogen bonds and disulfide bonds, a total of 14 converged structures were obtained. The atomic root mean square difference for the 14 converged structures with respect to the mean coordinates is 0.42 (+/- 0.07) A for the backbone atoms (N, C alpha, C) and 0.95 (+/- 0.15) A for all heavy atoms of the central part (residues 4 to 38) constrained by four disulfide bonds. The N- and C-terminal segments (residues 1 to 3 and 39 to 48, respectively) have a disordered structure in aqueous solution. The molecular structure of omega-agatoxin IVA is composed of a short triple-stranded antiparallel beta-sheet, three loops, and the disordered N- and C-terminal segments. The overall beta-sheet topology is +2x, -1, which is the same as that reported for omega-conotoxin GVIA, an N-type calcium channel blocker. Irrespective of differences in the number of disulfide bonds and low primary sequence homology, these two peptide toxins show a significant structural similarity in three dimensions. The whole-cell voltage-clamp recording using rat cerebellar slices suggests that the hydrophobic C-terminal segment of omega-agatoxin IVA, which does not exist in omega-conotoxin GVIA, plays a crucial role in the blocking action of omega-agatoxin IVA on the P-type calcium channel in rat cerebellar Purkinje cells. The present study provides a molecular basis for the toxin-channel interaction, and thereby provides insight into the discrimination of different subtypes of calcium channels.
PubMed: 7623383
DOI: 10.1006/jmbi.1995.0406
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

236371

PDB entries from 2025-05-21

PDB statisticsPDBj update infoContact PDBjnumon