Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1GAL

CRYSTAL STRUCTURE OF GLUCOSE OXIDASE FROM ASPERGILLUS NIGER: REFINED AT 2.3 ANGSTROMS RESOLUTION

Summary for 1GAL
Entry DOI10.2210/pdb1gal/pdb
DescriptorGLUCOSE OXIDASE, alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose, 2-acetamido-2-deoxy-beta-D-glucopyranose, ... (5 entities in total)
Functional Keywordsoxidoreductase(flavoprotein)
Biological sourceAspergillus niger
Total number of polymer chains1
Total formula weight65910.22
Authors
Hecht, H.J.,Kalisz, K.,Hendle, J.,Schmid, R.D.,Schomburg, D. (deposition date: 1992-08-27, release date: 1993-10-31, Last modification date: 2024-10-23)
Primary citationHecht, H.J.,Kalisz, H.M.,Hendle, J.,Schmid, R.D.,Schomburg, D.
Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution.
J.Mol.Biol., 229:153-172, 1993
Cited by
PubMed Abstract: Glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) is an FAD-dependent enzyme that catalyzes the oxidation of beta-D-glucose by molecular oxygen. The crystal structure of the partially deglycosylated enzyme from Aspergillus niger has been determined by isomorphous replacement and refined to 2.3 A resolution. The final crystallographic R-value is 18.1% for reflections between 10.0 and 2.3 A resolution. The refined model includes 580 amino acid residues, the FAD cofactor, six N-acetylglucosamine residues, three mannose residues and 152 solvent molecules. The FAD-binding domain is topologically very similar to other FAD-binding proteins. The substrate-binding domain is formed from non-continuous segments of sequence and is characterized by a deep pocket. One side of this pocket is formed by a six-stranded antiparallel beta-sheet with the flavin ring system of FAD located at the bottom of the pocket on the opposite side. Part of the entrance to the active site pocket is at the interface to the second subunit of the dimeric enzyme and is formed by a 20-residue lid, which in addition covers parts of the FAD-binding site. The carbohydrate moiety attached to Asn89 at the tip of this lid forms a link between the subunits of the dimer.
PubMed: 8421298
DOI: 10.1006/jmbi.1993.1015
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.3 Å)
Structure validation

246704

PDB entries from 2025-12-24

PDB statisticsPDBj update infoContact PDBjnumon