Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1CB3

LOCAL INTERACTIONS DRIVE THE FORMATION OF NON-NATIVE STRUCTURE IN THE DENATURED STATE OF HUMAN ALPHA-LACTALBUMIN: A HIGH RESOLUTION STRUCTURAL CHARACTERIZATION OF A PEPTIDE MODEL IN AQUEOUS SOLUTION

Summary for 1CB3
Entry DOI10.2210/pdb1cb3/pdb
NMR InformationBMRB: 4483
DescriptorLCA (1 entity in total)
Functional Keywordsmolten globule state, protein folding, non-native interactions, alpha- lactalbumin
Biological sourceHomo sapiens (human)
Total number of polymer chains1
Total formula weight1326.57
Authors
Demarest, S.J.,Hua, Y.,Raleigh, D.P. (deposition date: 1999-02-26, release date: 1999-06-08, Last modification date: 2024-11-20)
Primary citationDemarest, S.J.,Hua, Y.,Raleigh, D.P.
Local interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution.
Biochemistry, 38:7380-7387, 1999
Cited by
PubMed Abstract: There are a small number of peptides derived from proteins that have a propensity to adopt structure in aqueous solution which is similar to the structure they possess in the parent protein. There are far fewer examples of protein fragments which adopt stable nonnative structures in isolation. Understanding how nonnative interactions are involved in protein folding is crucial to our understanding of the topic. Here we show that a small, 11 amino acid peptide corresponding to residues 101-111 of the protein alpha-lactalbumin is remarkably structured in isolation in aqueous solution. The peptide has been characterized by 1H NMR, and 170 ROE-derived constraints were used to calculate a structure. The calculations yielded a single, high-resolution structure for residues 101-107 that is nonnative in both the backbone and side-chain conformations. In the pH 6.5 crystal structure, residues 101-105 are in an irregular turn-like conformation and residues 106-111 form an alpha-helix. In the pH 4.2 crystal structure, residues 101-105 form an alpha-helix, and residues 106-111 form a loopike structure. Both of these structures are significantly different from the conformation adopted by our peptide. The structure in the peptide model is primarily the result of local side-chain interactions that force the backbone to adopt a nonnative 310/turn-like structure in residues 103-106. The structure in aqueous solution was compared to the structure in 30% trifluoroethanol (TFE), and clear differences were observed. In particular, one of the side-chain interactions, a hydrophobic cluster involving residues 101-105, is different in the two solvents and residues 107-111 are considerably more ordered in 30% TFE. The implications of the nonnative structure for the folding of alpha-lactalbumin is discussed.
PubMed: 10353850
DOI: 10.1021/bi990320z
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

237423

PDB entries from 2025-06-11

PDB statisticsPDBj update infoContact PDBjnumon