Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1BWK

OLD YELLOW ENZYME (OYE1) MUTANT H191N

Summary for 1BWK
Entry DOI10.2210/pdb1bwk/pdb
DescriptorPROTEIN (NADPH DEHYDROGENASE 1), FLAVIN MONONUCLEOTIDE (3 entities in total)
Functional Keywordsflavoenzyme, nadph oxidoreductase, tim barrel, oxidoreductase
Biological sourceCandida albicans
Total number of polymer chains1
Total formula weight45330.64
Authors
Brown, B.J.,Deng, Z.,Karplus, P.A.,Massey, V. (deposition date: 1998-09-24, release date: 1998-09-30, Last modification date: 2023-08-09)
Primary citationBrown, B.J.,Deng, Z.,Karplus, P.A.,Massey, V.
On the active site of Old Yellow Enzyme. Role of histidine 191 and asparagine 194.
J.Biol.Chem., 273:32753-32762, 1998
Cited by
PubMed Abstract: Old Yellow Enzyme (OYE) binds phenolic ligands forming long wavelength (500-800 nm) charge-transfer complexes. The enzyme is reduced by NADPH, and oxygen, quinones, and alpha,beta-unsaturated aldehydes and ketones can act as electron acceptors to complete catalytic turnover. Solution of the crystal structure of OYE1 from brewer's bottom yeast (Fox, K. M., and Karplus, P. A. (1994) Structure 2, 1089-1105) made it possible to identify histidine 191 and asparagine 194 as amino acid residues that hydrogen-bond with the phenolic ligands, stabilizing the anionic form involved in charge-transfer interaction with the FMN prosthetic group. His-191 and Asn-194 are also predicted to interact with the nicotinamide ring of NADPH in the active site. Mutations of His-191 to Asn, Asn-194 to His, and a double mutation, H191N/N194H, were made of OYE1. It was not possible to isolate the N191H mutant enzyme, but the other two mutant forms had the expected effect on phenolic ligand binding, i.e. decreased binding affinity and decreased charge-transfer absorbance. Reduction of the H191N mutant enzyme by NADPH was similar to that of OYE1, but the reduction rate constant for NADH was greatly decreased. The double mutant enzyme had an increased rate constant for reduction by NADPH, but the reduction rate constant with NADH was lower by a factor of 15. The reactivity of OYE1 and the mutant enzymes with oxygen was similar, but the reactivity of 2-cyclohexenone was greatly decreased by the mutations. The crystal structures of the two mutant forms showed only minor changes from that of the wild type enzyme.
PubMed: 9830019
DOI: 10.1074/jbc.273.49.32753
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.3 Å)
Structure validation

237423

数据于2025-06-11公开中

PDB statisticsPDBj update infoContact PDBjnumon