Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1AKP

SEQUENTIAL 1H,13C AND 15N NMR ASSIGNMENTS AND SOLUTION CONFORMATION OF APOKEDARCIDIN

Summary for 1AKP
Entry DOI10.2210/pdb1akp/pdb
DescriptorAPOKEDARCIDIN (1 entity in total)
Functional Keywordsantibiotic chromoprotein
Biological sourceactinomycete ATCC 53650
Total number of polymer chains1
Total formula weight10972.94
Authors
Primary citationConstantine, K.L.,Colson, K.L.,Wittekind, M.,Friedrichs, M.S.,Zein, N.,Tuttle, J.,Langley, D.R.,Leet, J.E.,Schroeder, D.R.,Lam, K.S.,Farmer III, B.T.,Metzler, W.J.,Bruccoleri, R.E.,Mueller, L.
Sequential 1H, 13C, and 15N NMR assignments and solution conformation of apokedarcidin.
Biochemistry, 33:11438-11452, 1994
Cited by
PubMed Abstract: Kedarcidin is a recently discovered antitumor antibiotic chromoprotein. The solution conformation of the kedarcidin apoprotein (114 residues) has been characterized by heteronuclear multidimensional NMR spectroscopy. Sequence-specific backbone atom resonance assignments were obtained for a uniformly 13C/15N-enriched sample of apokedarcidin via a semiautomated analysis of 3D HNCACB, 3D CBCA-(CO)NH, 4D HNCAHA, 4D HN(CO)CAHA, 3D HBHA(CO)NH, and 3D HNHA(Gly) spectra. Side-chain assignments were subsequently obtained by analysis of (primarily) 3D HCCH-TOCSY and HCCH-COSY spectra. A qualitative analysis of the secondary structure is presented on the basis of 3J alpha NH coupling constants, deviations of 13C alpha and 13C beta chemical shifts from random coil values, and NOEs observed in 3D 15N- and 13C-edited NOESY-HSQC spectra. This analysis revealed a four-stranded antiparallel beta-sheet, a three-stranded antiparallel beta-sheet, and two two-standed antiparallel beta-sheets. The assignments of cross-peaks in the 3D NOESY spectra were assisted by reference to a preliminary model of apokedarcidin built using the program CONGEN starting from the X-ray structure of the homologous protein aponeocarzinostatin. An ensemble of 15 apokedarcidin solution structures has been generated by variable target function minimization (DIANA program) and refined by simulated annealing (X-PLOR program). The average backbone atom root-mean-square difference between the individual structures and the mean coordinates is 0.68 +/- 0.08 A. The overall fold of apokedarcidin is well-defined; it is composed of an immunoglobulin-like seven-stranded antiparallel beta-barrel and a subdomain containing two antiparallel beta-ribbons. Highly similar tertiary structures have been previously reported for the related proteins neocarzinostatin, macromomycin, and actinoxanthin. Important structural features are revealed, including the dimensions of the chromophore-binding pocket and the locations of side chains that are likely to be involved in chromophore stabilization.
PubMed: 7918358
DOI: 10.1021/bi00204a006
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

238582

PDB entries from 2025-07-09

PDB statisticsPDBj update infoContact PDBjnumon