1QIO
SPECIFIC CHEMICAL AND STRUCTURAL DAMAGE CAUSED BY INTENSE SYNCHROTRON RADIATION TO HEN EGG WHITE LYSOZYME
Summary for 1QIO
Entry DOI | 10.2210/pdb1qio/pdb |
Descriptor | LYSOZYME, SODIUM ION, CHLORIDE ION, ... (4 entities in total) |
Functional Keywords | radiation damages, disulfide bond, hydrolase (o-glycosyl), hydrolase |
Biological source | Gallus gallus (chicken) |
Total number of polymer chains | 1 |
Total formula weight | 14425.06 |
Authors | Kryger, G.,Weik, M.,Ravelli, R.B. (deposition date: 1999-06-14, release date: 2001-04-11, Last modification date: 2024-10-30) |
Primary citation | Weik, M.,Ravelli, R.B.,Kryger, G.,McSweeney, S.,Raves, M.L.,Harel, M.,Gros, P.,Silman, I.,Kroon, J.,Sussman, J.L. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc.Natl.Acad.Sci.USA, 97:623-628, 2000 Cited by PubMed Abstract: Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance. PubMed: 10639129DOI: 10.1073/pnas.97.2.623 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.2 Å) |
Structure validation
Download full validation report
