Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1IFB

REFINED APOPROTEIN STRUCTURE OF RAT INTESTINAL FATTY ACID BINDING PROTEIN PRODUCED IN ESCHERICHIA COLI

Summary for 1IFB
Entry DOI10.2210/pdb1ifb/pdb
DescriptorINTESTINAL FATTY ACID BINDING PROTEIN (2 entities in total)
Functional Keywordsfatty acid-binding protein
Biological sourceRattus rattus (black rat)
Cellular locationCytoplasm: P02693
Total number of polymer chains1
Total formula weight15015.01
Authors
Sacchettini, J.C.,Gordon, J.I.,Banaszak, L.J. (deposition date: 1990-12-05, release date: 1992-01-15, Last modification date: 2024-02-07)
Primary citationSacchettini, J.C.,Gordon, J.I.,Banaszak, L.J.
Refined apoprotein structure of rat intestinal fatty acid binding protein produced in Escherichia coli.
Proc.Natl.Acad.Sci.USA, 86:7736-7740, 1989
Cited by
PubMed Abstract: Rat intestinal fatty acid binding protein (I-FABP) is a member of a family of cytoplasmic hydrophobic ligand-binding proteins. To gain insights about the contribution of bound fatty acid to I-FABP's conformation and mechanism of ligand binding, we have determined the structure of Escherichia coli-derived rat apo-I-FABP to 1.96-A resolution and compared it to the recently refined structure of I-FABP with bound palmitate. Both apo- and holo-I-FABP are composed primarily of anti-parallel beta-strands which form two nearly orthogonal beta-sheets ("beta-clam"). The overall structures of the apo- and holo-I-FABP are nearly identical, with a root mean square (rms) difference of 0.37 A between C alpha atoms, 0.38 A between all main-chain atoms, and 0.94 A between all side-chain atoms. However, rms differences of greater than 1.3 A were noted for the side chains of Ile-23, Lys-27, Arg-56, Leu-72, Ala-73, and Asp-74. The space occupied by bound ligand in the core of the holoprotein is occupied in the apo-protein by ordered solvent molecules. This results in an increase in the total number of internal ordered solvent molecules from 7 in the holoprotein to 13 in apo-I-FABP. This finding, together with observed differences in the side-chain orientations of two residues (Arg-56 and Lys-27) situated over a potential opening to the cores of the apo- and holoproteins, suggests that solvent molecules play a critical role in ligand binding. Moreover, the data indicate that the beta-clam structure is stable even in the absence of bound ligand.
PubMed: 2682622
DOI: 10.1073/pnas.86.20.7736
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.96 Å)
Structure validation

230444

PDB entries from 2025-01-22

PDB statisticsPDBj update infoContact PDBjnumon