Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

1HGY

CEL6A D221A mutant

Summary for 1HGY
Entry DOI10.2210/pdb1hgy/pdb
Related1CB2 1HGW 1QJW 1QK0 1QK2
DescriptorCELLOBIOHYDROLASE CEL6A (FORMERLY CALLED CBH II), 2-acetamido-2-deoxy-beta-D-glucopyranose, alpha-D-mannopyranose, ... (6 entities in total)
Functional Keywordshydrolase (o-glycosyl), glycosidase, glycoprotein
Biological sourceTRICHODERMA REESEI
Cellular locationSecreted: P07987
Total number of polymer chains2
Total formula weight81789.90
Authors
Zou, J.-Y.,Kleywegt, G.J.,Jones, T.A. (deposition date: 2000-12-15, release date: 2002-01-15, Last modification date: 2024-10-16)
Primary citationKoivula, A.,Ruohonen, L.,Wohlfahrt, G.,Reinikainen, T.,Teeri, T.T.,Piens, K.,Claeyssens, M.,Weber, M.,Vasella, A.,Becker, D.,Sinnott, M.L.,Zou, J.-Y.,Kleywegt, G.J.,Szardenings, M.,Stahlberg, J.,Jones, T.A.
The Active Site of Cellobiohydrolase Cel6A from Trichoderma Reesei: The Roles of Aspartic Acids D221 and D175
J.Am.Chem.Soc., 124:10015-, 2002
Cited by
PubMed Abstract: Trichoderma reesei cellobiohydrolase Cel6A is an inverting glycosidase. Structural studies have established that the tunnel-shaped active site of Cel6A contains two aspartic acids, D221 and D175, that are close to the glycosidic oxygen of the scissile bond and at hydrogen-bonding distance from each other. Here, site-directed mutagenesis, X-ray crystallography, and enzyme kinetic studies have been used to confirm the role of residue D221 as the catalytic acid. D175 is shown to affect protonation of D221 and to contribute to the electrostatic stabilization of the partial positive charge in the transition state. Structural and modeling studies suggest that the single-displacement mechanism of Cel6A may not directly involve a catalytic base. The value of (D2O)(V) of 1.16 +/- 0.14 for hydrolysis of cellotriose suggests that the large direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond between D221 and D175 before catalysis.
PubMed: 12188666
DOI: 10.1021/JA012659Q
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.2 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon