[English] 日本語
Yorodumi
- PDB-9pf1: Nub1/Fat10-processing human 26S proteasome with Rpt4 at top of sp... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9pf1
TitleNub1/Fat10-processing human 26S proteasome with Rpt4 at top of spiral staircase (AAA+ motor locally refined)
Components
  • (26S protease regulatory subunit ...) x 2
  • (26S proteasome regulatory subunit ...) x 4
  • (Proteasome subunit alpha type- ...) x 7
  • 26S proteasome non-ATPase regulatory subunit 14
  • Substrate polypeptide
KeywordsMOTOR PROTEIN / 26S Proteasome / HYDROLASE-PROTEIN BINDING complex
Function / homology
Function and homology information


thyrotropin-releasing hormone receptor binding / nuclear proteasome complex / host-mediated perturbation of viral transcription / positive regulation of inclusion body assembly / Hydrolases; Acting on peptide bonds (peptidases); Omega peptidases / proteasome accessory complex / purine ribonucleoside triphosphate binding / cytosolic proteasome complex / positive regulation of proteasomal protein catabolic process / proteasome-activating activity ...thyrotropin-releasing hormone receptor binding / nuclear proteasome complex / host-mediated perturbation of viral transcription / positive regulation of inclusion body assembly / Hydrolases; Acting on peptide bonds (peptidases); Omega peptidases / proteasome accessory complex / purine ribonucleoside triphosphate binding / cytosolic proteasome complex / positive regulation of proteasomal protein catabolic process / proteasome-activating activity / proteasome regulatory particle, lid subcomplex / proteasome regulatory particle, base subcomplex / metal-dependent deubiquitinase activity / protein K63-linked deubiquitination / negative regulation of programmed cell death / Regulation of ornithine decarboxylase (ODC) / Proteasome assembly / Cross-presentation of soluble exogenous antigens (endosomes) / proteasome core complex / Somitogenesis / K63-linked deubiquitinase activity / proteasome binding / transcription factor binding / myofibril / general transcription initiation factor binding / blastocyst development / positive regulation of RNA polymerase II transcription preinitiation complex assembly / protein deubiquitination / immune system process / NF-kappaB binding / endopeptidase activator activity / proteasome core complex, alpha-subunit complex / SARS-CoV-1 targets host intracellular signalling and regulatory pathways / regulation of proteasomal protein catabolic process / ERAD pathway / inclusion body / proteasome complex / TBP-class protein binding / proteolysis involved in protein catabolic process / sarcomere / Regulation of activated PAK-2p34 by proteasome mediated degradation / Autodegradation of Cdh1 by Cdh1:APC/C / APC/C:Cdc20 mediated degradation of Securin / N-glycan trimming in the ER and Calnexin/Calreticulin cycle / Asymmetric localization of PCP proteins / Ubiquitin-dependent degradation of Cyclin D / SCF-beta-TrCP mediated degradation of Emi1 / NIK-->noncanonical NF-kB signaling / TNFR2 non-canonical NF-kB pathway / AUF1 (hnRNP D0) binds and destabilizes mRNA / Vpu mediated degradation of CD4 / Assembly of the pre-replicative complex / Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A / Degradation of DVL / Dectin-1 mediated noncanonical NF-kB signaling / Cdc20:Phospho-APC/C mediated degradation of Cyclin A / negative regulation of inflammatory response to antigenic stimulus / Degradation of AXIN / P-body / Hh mutants are degraded by ERAD / lipopolysaccharide binding / Activation of NF-kappaB in B cells / Degradation of GLI1 by the proteasome / G2/M Checkpoints / Hedgehog ligand biogenesis / GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 / Defective CFTR causes cystic fibrosis / Autodegradation of the E3 ubiquitin ligase COP1 / Negative regulation of NOTCH4 signaling / Regulation of RUNX3 expression and activity / Vif-mediated degradation of APOBEC3G / Hedgehog 'on' state / FBXL7 down-regulates AURKA during mitotic entry and in early mitosis / Degradation of GLI2 by the proteasome / GLI3 is processed to GLI3R by the proteasome / APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1 / MAPK6/MAPK4 signaling / double-strand break repair via homologous recombination / Degradation of beta-catenin by the destruction complex / Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha / ABC-family proteins mediated transport / double-strand break repair via nonhomologous end joining / CDK-mediated phosphorylation and removal of Cdc6 / CLEC7A (Dectin-1) signaling / SCF(Skp2)-mediated degradation of p27/p21 / response to virus / FCERI mediated NF-kB activation / Regulation of expression of SLITs and ROBOs / Metalloprotease DUBs / Regulation of PTEN stability and activity / nuclear matrix / Interleukin-1 signaling / cytoplasmic ribonucleoprotein granule / Orc1 removal from chromatin / metallopeptidase activity / Regulation of RAS by GAPs / Regulation of RUNX2 expression and activity / osteoblast differentiation / The role of GTSE1 in G2/M progression after G2 checkpoint / Separation of Sister Chromatids
Similarity search - Function
: / 26S proteasome regulatory subunit RPN11 C-terminal domain / : / 26S proteasome regulatory subunit 7, OB domain / : / Proteasomal ATPase OB C-terminal domain / Proteasomal ATPase OB C-terminal domain / Proteasome subunit alpha 1 / : / JAB1/Mov34/MPN/PAD-1 ubiquitin protease ...: / 26S proteasome regulatory subunit RPN11 C-terminal domain / : / 26S proteasome regulatory subunit 7, OB domain / : / Proteasomal ATPase OB C-terminal domain / Proteasomal ATPase OB C-terminal domain / Proteasome subunit alpha 1 / : / JAB1/Mov34/MPN/PAD-1 ubiquitin protease / Proteasome subunit alpha5 / Proteasome subunit alpha6 / Proteasome beta-type subunit, conserved site / Proteasome subunit A N-terminal signature / Proteasome alpha-type subunits signature. / Proteasome alpha-subunit, N-terminal domain / Proteasome subunit A N-terminal signature Add an annotation / : / Proteasome alpha-type subunit / Proteasome alpha-type subunit profile. / Proteasome subunit / Proteasome, subunit alpha/beta / JAB/MPN domain / JAB1/MPN/MOV34 metalloenzyme domain / MPN domain / MPN domain profile. / AAA ATPase, AAA+ lid domain / AAA+ lid domain / ATPase, AAA-type, conserved site / AAA-protein family signature. / Nucleophile aminohydrolases, N-terminal / ATPase family associated with various cellular activities (AAA) / ATPase, AAA-type, core / Nucleic acid-binding, OB-fold / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
ADENOSINE-5'-DIPHOSPHATE / ADENOSINE-5'-TRIPHOSPHATE / 26S proteasome non-ATPase regulatory subunit 14 / Proteasome subunit alpha type-7 / 26S proteasome regulatory subunit 6A / Proteasome subunit alpha type-1 / Proteasome subunit alpha type-2 / Proteasome subunit alpha type-3 / Proteasome subunit alpha type-4 / Proteasome subunit alpha type-5 ...ADENOSINE-5'-DIPHOSPHATE / ADENOSINE-5'-TRIPHOSPHATE / 26S proteasome non-ATPase regulatory subunit 14 / Proteasome subunit alpha type-7 / 26S proteasome regulatory subunit 6A / Proteasome subunit alpha type-1 / Proteasome subunit alpha type-2 / Proteasome subunit alpha type-3 / Proteasome subunit alpha type-4 / Proteasome subunit alpha type-5 / 26S proteasome regulatory subunit 7 / 26S proteasome regulatory subunit 6B / Proteasome subunit alpha type-6 / 26S proteasome regulatory subunit 4 / 26S proteasome regulatory subunit 8 / 26S proteasome regulatory subunit 10B
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.57 Å
AuthorsArkinson, C. / Gee, C.L. / Martin, A.
Funding support United States, 1items
OrganizationGrant numberCountry
Howard Hughes Medical Institute (HHMI) United States
CitationJournal: Nat Struct Mol Biol / Year: 2025
Title: Structural landscape of the degrading 26S proteasome reveals conformation-specific binding of TXNL1.
Authors: Connor Arkinson / Christine L Gee / Zeyuan Zhang / Ken C Dong / Andreas Martin /
Abstract: The 26S proteasome targets many cellular proteins for degradation during homeostasis and quality control. Proteasome-interacting cofactors modulate these functions and aid in substrate degradation. ...The 26S proteasome targets many cellular proteins for degradation during homeostasis and quality control. Proteasome-interacting cofactors modulate these functions and aid in substrate degradation. Here we solve high-resolution structures of the redox active cofactor TXNL1 bound to the human 26S proteasome at saturating and substoichiometric concentrations by time-resolved cryo-electron microscopy (cryo-EM). We identify distinct binding modes of TXNL1 that depend on the proteasome conformation and ATPase motor states. Together with biophysical and biochemical experiments, we show that the resting-state proteasome binds TXNL1 with low affinity and in variable positions on top of the Rpn11 deubiquitinase. In contrast, in the actively degrading proteasome, TXNL1 uses additional interactions for high-affinity binding, whereby its C-terminal tail covers the catalytic groove of Rpn11 and coordinates the active-site Zn. Furthermore, these cryo-EM structures of the degrading proteasome capture the ATPase hexamer in several spiral-staircase arrangements that indicate temporally asymmetric hydrolysis and conformational changes in bursts during mechanical substrate unfolding and translocation. Remarkably, we catch the proteasome in the act of unfolding the β-barrel mEos3.2 substrate while the ATPase hexamer is in a particular staircase register. Our findings advance current models for protein translocation through hexameric AAA+ motors and reveal how the proteasome uses its distinct conformational states to coordinate cofactor binding and substrate processing.
History
DepositionJul 3, 2025Deposition site: RCSB / Processing site: RCSB
Revision 1.0Nov 19, 2025Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: 26S proteasome regulatory subunit 7
C: 26S protease regulatory subunit 8
G: Proteasome subunit alpha type-6
H: Proteasome subunit alpha type-2
I: Proteasome subunit alpha type-4
J: Proteasome subunit alpha type-7
L: Proteasome subunit alpha type-1
M: Proteasome subunit alpha type-3
c: 26S proteasome non-ATPase regulatory subunit 14
v: Substrate polypeptide
B: 26S proteasome regulatory subunit 4
D: 26S proteasome regulatory subunit 6B
E: 26S protease regulatory subunit 10B
F: 26S proteasome regulatory subunit 6A
K: Proteasome subunit alpha type-5
hetero molecules


Theoretical massNumber of molelcules
Total (without water)530,67224
Polymers527,83515
Non-polymers2,8379
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
26S proteasome regulatory subunit ... , 4 types, 4 molecules ABDF

#1: Protein 26S proteasome regulatory subunit 7 / 26S proteasome AAA-ATPase subunit RPT1 / Proteasome 26S subunit ATPase 2 / Protein MSS1


Mass: 48700.805 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMC2, MSS1 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P35998
#11: Protein 26S proteasome regulatory subunit 4 / P26s4 / 26S proteasome AAA-ATPase subunit RPT2 / Proteasome 26S subunit ATPase 1


Mass: 49260.504 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMC1 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P62191
#12: Protein 26S proteasome regulatory subunit 6B / 26S proteasome AAA-ATPase subunit RPT3 / MB67-interacting protein / MIP224 / Proteasome 26S subunit ...26S proteasome AAA-ATPase subunit RPT3 / MB67-interacting protein / MIP224 / Proteasome 26S subunit ATPase 4 / Tat-binding protein 7 / TBP-7


Mass: 47368.105 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMC4, MIP224, TBP7 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P43686
#14: Protein 26S proteasome regulatory subunit 6A / 26S proteasome AAA-ATPase subunit RPT5 / Proteasome 26S subunit ATPase 3 / Proteasome subunit P50 / ...26S proteasome AAA-ATPase subunit RPT5 / Proteasome 26S subunit ATPase 3 / Proteasome subunit P50 / Tat-binding protein 1 / TBP-1


Mass: 49266.457 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMC3, TBP1 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P17980

-
26S protease regulatory subunit ... , 2 types, 2 molecules CE

#2: Protein 26S protease regulatory subunit 8 / 26S proteasome AAA-ATPase subunit RPT6 / Proteasome 26S subunit ATPase 5 / Proteasome subunit p45 / ...26S proteasome AAA-ATPase subunit RPT6 / Proteasome 26S subunit ATPase 5 / Proteasome subunit p45 / Thyroid hormone receptor-interacting protein 1 / TRIP1 / p45/SUG


Mass: 45694.047 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMC5, SUG1 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P62195
#13: Protein 26S protease regulatory subunit 10B / 26S proteasome AAA-ATPase subunit RPT4 / Proteasome 26S subunit ATPase 6 / Proteasome subunit p42


Mass: 44241.008 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMC6, SUG2 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P62333

-
Proteasome subunit alpha type- ... , 7 types, 7 molecules GHIJLMK

#3: Protein Proteasome subunit alpha type-6 / 27 kDa prosomal protein / p27K / Macropain iota chain / Multicatalytic endopeptidase complex iota ...27 kDa prosomal protein / p27K / Macropain iota chain / Multicatalytic endopeptidase complex iota chain / Proteasome iota chain


Mass: 27432.459 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA6, PROS27 / Cell line (production host): HEK293 / Production host: Homo sapiens (human)
References: UniProt: P60900, proteasome endopeptidase complex
#4: Protein Proteasome subunit alpha type-2 / Macropain subunit C3 / Multicatalytic endopeptidase complex subunit C3 / Proteasome component C3 / ...Macropain subunit C3 / Multicatalytic endopeptidase complex subunit C3 / Proteasome component C3 / Proteasome subunit alpha-2 / alpha-2


Mass: 25934.486 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA2, HC3, PSC3 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P25787
#5: Protein Proteasome subunit alpha type-4 / Macropain subunit C9 / Multicatalytic endopeptidase complex subunit C9 / Proteasome component C9 / ...Macropain subunit C9 / Multicatalytic endopeptidase complex subunit C9 / Proteasome component C9 / Proteasome subunit L


Mass: 29525.842 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA4, HC9, PSC9 / Cell line (production host): HEK293 / Production host: Homo sapiens (human)
References: UniProt: P25789, proteasome endopeptidase complex
#6: Protein Proteasome subunit alpha type-7 / Proteasome subunit RC6-1 / Proteasome subunit XAPC7 / Proteasome subunit alpha-4 / alpha-4


Mass: 27929.891 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA7, HSPC / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: O14818
#7: Protein Proteasome subunit alpha type-1 / 30 kDa prosomal protein / PROS-30 / Macropain subunit C2 / Multicatalytic endopeptidase complex ...30 kDa prosomal protein / PROS-30 / Macropain subunit C2 / Multicatalytic endopeptidase complex subunit C2 / Proteasome component C2 / Proteasome nu chain


Mass: 29595.627 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA1, HC2, NU, PROS30, PSC2 / Cell line (production host): HEK293 / Production host: Homo sapiens (human)
References: UniProt: P25786, proteasome endopeptidase complex
#8: Protein Proteasome subunit alpha type-3 / Macropain subunit C8 / Multicatalytic endopeptidase complex subunit C8 / Proteasome component C8


Mass: 28469.252 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA3, HC8, PSC8 / Cell line (production host): HEK293 / Production host: Homo sapiens (human)
References: UniProt: P25788, proteasome endopeptidase complex
#15: Protein Proteasome subunit alpha type-5 / Macropain zeta chain / Multicatalytic endopeptidase complex zeta chain / Proteasome subunit alpha-5 ...Macropain zeta chain / Multicatalytic endopeptidase complex zeta chain / Proteasome subunit alpha-5 / alpha-5 / Proteasome zeta chain


Mass: 26435.977 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMA5 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: P28066

-
Protein / Protein/peptide , 2 types, 2 molecules cv

#10: Protein/peptide Substrate polypeptide


Mass: 1039.273 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli BL21 (bacteria) / Variant (production host): Star
#9: Protein 26S proteasome non-ATPase regulatory subunit 14


Mass: 46940.898 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PSMD14 / Cell line (production host): HEK293 / Production host: Homo sapiens (human) / References: UniProt: O00487

-
Non-polymers , 4 types, 9 molecules

#16: Chemical
ChemComp-ADP / ADENOSINE-5'-DIPHOSPHATE


Mass: 427.201 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C10H15N5O10P2 / Feature type: SUBJECT OF INVESTIGATION / Comment: ADP, energy-carrying molecule*YM
#17: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Zn / Feature type: SUBJECT OF INVESTIGATION
#18: Chemical ChemComp-ATP / ADENOSINE-5'-TRIPHOSPHATE


Mass: 507.181 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: C10H16N5O13P3 / Feature type: SUBJECT OF INVESTIGATION / Comment: ATP, energy-carrying molecule*YM
#19: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Mg / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Human 26S proteasome complexed with Nub1 and Fat 10 with RPT4 at the top
Type: COMPLEX / Entity ID: #1-#15 / Source: MULTIPLE SOURCES
Molecular weightValue: 2.6 MDa / Experimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human) / Cell: HEK293
Buffer solutionpH: 7.4
Details: 30 mM HEPES pH7.4, 25 mM NaCl, 25 mM KCl, 3% (v/v) glycerol, 5 mM MgCl2 2 mM ATP and 0.5 mM TCEP
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid mesh size: 200 divisions/in. / Grid type: UltrAuFoil R2/2
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 298 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 1700 nm / Nominal defocus min: 500 nm / Alignment procedure: BASIC
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM software
IDNameVersionCategory
1cryoSPARCparticle selection
2PHENIX1.21_5207:model refinement
13cryoSPARC3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.57 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 16398 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more