[English] 日本語

- PDB-8p3y: Homomeric GluA2 flip R/G-edited Q/R-edited F231A mutant in tandem... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8p3y | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Homomeric GluA2 flip R/G-edited Q/R-edited F231A mutant in tandem with TARP gamma-2, desensitized conformation 3 | ||||||||||||
![]() |
| ||||||||||||
![]() | MEMBRANE PROTEIN / AMPA-type glutamate neurotransmitter receptor / auxiliary subunit complex / agonist / desensitized | ||||||||||||
Function / homology | ![]() Presynaptic depolarization and calcium channel opening / eye blink reflex / positive regulation of protein localization to basolateral plasma membrane / cerebellar mossy fiber / LGI-ADAM interactions / postsynaptic neurotransmitter receptor diffusion trapping / Trafficking of AMPA receptors / channel regulator activity / regulation of AMPA receptor activity / membrane hyperpolarization ...Presynaptic depolarization and calcium channel opening / eye blink reflex / positive regulation of protein localization to basolateral plasma membrane / cerebellar mossy fiber / LGI-ADAM interactions / postsynaptic neurotransmitter receptor diffusion trapping / Trafficking of AMPA receptors / channel regulator activity / regulation of AMPA receptor activity / membrane hyperpolarization / nervous system process / protein targeting to membrane / voltage-gated calcium channel complex / neurotransmitter receptor localization to postsynaptic specialization membrane / spine synapse / dendritic spine neck / neuromuscular junction development / dendritic spine head / Activation of AMPA receptors / perisynaptic space / AMPA glutamate receptor activity / transmission of nerve impulse / ligand-gated monoatomic cation channel activity / Trafficking of GluR2-containing AMPA receptors / response to lithium ion / immunoglobulin binding / AMPA glutamate receptor complex / kainate selective glutamate receptor activity / ionotropic glutamate receptor complex / cellular response to glycine / extracellularly glutamate-gated ion channel activity / membrane depolarization / asymmetric synapse / regulation of receptor recycling / Unblocking of NMDA receptors, glutamate binding and activation / positive regulation of synaptic transmission / glutamate receptor binding / regulation of postsynaptic membrane neurotransmitter receptor levels / voltage-gated calcium channel activity / glutamate-gated receptor activity / regulation of synaptic transmission, glutamatergic / response to fungicide / cytoskeletal protein binding / ionotropic glutamate receptor binding / presynaptic active zone membrane / extracellular ligand-gated monoatomic ion channel activity / somatodendritic compartment / glutamate-gated calcium ion channel activity / cellular response to brain-derived neurotrophic factor stimulus / ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potential / dendrite membrane / calcium channel regulator activity / dendrite cytoplasm / ionotropic glutamate receptor signaling pathway / positive regulation of synaptic transmission, glutamatergic / SNARE binding / hippocampal mossy fiber to CA3 synapse / dendritic shaft / regulation of membrane potential / transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potential / synaptic transmission, glutamatergic / PDZ domain binding / protein tetramerization / establishment of protein localization / synaptic membrane / modulation of chemical synaptic transmission / postsynaptic density membrane / terminal bouton / Schaffer collateral - CA1 synapse / cerebral cortex development / receptor internalization / synaptic vesicle membrane / response to calcium ion / synaptic vesicle / presynapse / signaling receptor activity / amyloid-beta binding / presynaptic membrane / growth cone / scaffold protein binding / chemical synaptic transmission / dendritic spine / perikaryon / postsynaptic membrane / neuron projection / postsynaptic density / axon / neuronal cell body / synapse / dendrite / protein-containing complex binding / protein kinase binding / glutamatergic synapse / cell surface / endoplasmic reticulum / protein-containing complex / identical protein binding / membrane / plasma membrane Similarity search - Function | ||||||||||||
Biological species | ![]() ![]() | ||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.55 Å | ||||||||||||
![]() | Krieger, J.M. / Zhang, D. / Yamashita, K. / Greger, I.H. | ||||||||||||
Funding support | ![]()
| ||||||||||||
![]() | ![]() Title: Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Authors: Danyang Zhang / Josip Ivica / James M Krieger / Hinze Ho / Keitaro Yamashita / Imogen Stockwell / Rozbeh Baradaran / Ondrej Cais / Ingo H Greger / ![]() ![]() Abstract: AMPA glutamate receptors (AMPARs), the primary mediators of excitatory neurotransmission in the brain, are either GluA2 subunit-containing and thus Ca-impermeable, or GluA2-lacking and Ca-permeable. ...AMPA glutamate receptors (AMPARs), the primary mediators of excitatory neurotransmission in the brain, are either GluA2 subunit-containing and thus Ca-impermeable, or GluA2-lacking and Ca-permeable. Despite their prominent expression throughout interneurons and glia, their role in long-term potentiation and their involvement in a range of neuropathologies, structural information for GluA2-lacking receptors is currently absent. Here we determine and characterize cryo-electron microscopy structures of the GluA1 homotetramer, fully occupied with TARPγ3 auxiliary subunits (GluA1/γ3). The gating core of both resting and open-state GluA1/γ3 closely resembles GluA2-containing receptors. However, the sequence-diverse N-terminal domains (NTDs) give rise to a highly mobile assembly, enabling domain swapping and subunit re-alignments in the ligand-binding domain tier that are pronounced in desensitized states. These transitions underlie the unique kinetic properties of GluA1. A GluA2 mutant (F231A) increasing NTD dynamics phenocopies this behaviour, and exhibits reduced synaptic responses, reflecting the anchoring function of the AMPAR NTD at the synapse. Together, this work underscores how the subunit-diverse NTDs determine subunit arrangement, gating properties and ultimately synaptic signalling efficiency among AMPAR subtypes. | ||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 455.3 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 343.5 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 17399MC ![]() 8c1pC ![]() 8c1qC ![]() 8c1rC ![]() 8c1sC ![]() 8c2hC ![]() 8c2iC ![]() 8p3qC ![]() 8p3sC ![]() 8p3tC ![]() 8p3uC ![]() 8p3vC ![]() 8p3wC ![]() 8p3xC ![]() 8p3zC ![]() 8pivC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 98655.672 Da / Num. of mol.: 4 / Mutation: F231A Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #2: Protein | Mass: 35938.746 Da / Num. of mol.: 4 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() Has protein modification | Y | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: GluA2igR_F231A-gamma2 tandem / Type: COMPLEX Details: GluA2 C-terminus fused to gamma-2 N-terminus with a linker Entity ID: all / Source: RECOMBINANT |
---|---|
Molecular weight | Value: 0.54 MDa / Experimental value: NO |
Source (natural) | Organism: ![]() ![]() |
Source (recombinant) | Organism: ![]() |
Buffer solution | pH: 8 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: TFS KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2400 nm / Nominal defocus min: 1400 nm |
Image recording | Electron dose: 50 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) |
-
Processing
EM software |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||
3D reconstruction | Resolution: 3.55 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 39344 / Symmetry type: POINT | ||||||||||||
Atomic model building | Protocol: RIGID BODY FIT / Space: REAL |