[English] 日本語
Yorodumi
- PDB-5u8c: CRYSTAL STRUCTURE OF GLUN1/GLUN2A LIGAND-BINDING DOMAIN IN COMPLE... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 5u8c
TitleCRYSTAL STRUCTURE OF GLUN1/GLUN2A LIGAND-BINDING DOMAIN IN COMPLEX WITH GLYCINE AND NVP-AAM077
Components
  • GLUTAMATE RECEPTOR IONOTROPIC, NMDA 2A
  • Glutamate receptor ionotropic, NMDA 1
KeywordsTRANSPORT PROTEIN / RECEPTOR / GLYCINE AND NVP-AAM077
Function / homology
Function and homology information


neurotransmitter receptor transport, plasma membrane to endosome / regulation of response to alcohol / response to ammonium ion / receptor recycling / directional locomotion / pons maturation / response to environmental enrichment / positive regulation of Schwann cell migration / regulation of cell communication / EPHB-mediated forward signaling ...neurotransmitter receptor transport, plasma membrane to endosome / regulation of response to alcohol / response to ammonium ion / receptor recycling / directional locomotion / pons maturation / response to environmental enrichment / positive regulation of Schwann cell migration / regulation of cell communication / EPHB-mediated forward signaling / auditory behavior / Assembly and cell surface presentation of NMDA receptors / serotonin metabolic process / olfactory learning / conditioned taste aversion / dendritic branch / response to hydrogen sulfide / regulation of respiratory gaseous exchange / response to other organism / positive regulation of inhibitory postsynaptic potential / protein localization to postsynaptic membrane / cellular response to magnesium ion / regulation of ARF protein signal transduction / response to methylmercury / transmitter-gated monoatomic ion channel activity / conditioned place preference / locomotion / response to glycine / propylene metabolic process / dendritic spine organization / response to carbohydrate / regulation of NMDA receptor activity / sleep / cellular response to dsRNA / cellular response to lipid / Synaptic adhesion-like molecules / regulation of monoatomic cation transmembrane transport / NMDA glutamate receptor activity / RAF/MAP kinase cascade / voltage-gated monoatomic cation channel activity / response to manganese ion / neurotransmitter receptor complex / NMDA selective glutamate receptor complex / cellular response to zinc ion / ligand-gated sodium channel activity / response to morphine / calcium ion transmembrane import into cytosol / glutamate receptor signaling pathway / glutamate binding / regulation of axonogenesis / neuromuscular process / regulation of dendrite morphogenesis / protein heterotetramerization / regulation of synapse assembly / male mating behavior / glycine binding / spinal cord development / positive regulation of reactive oxygen species biosynthetic process / parallel fiber to Purkinje cell synapse / positive regulation of calcium ion transport into cytosol / suckling behavior / regulation of postsynaptic membrane potential / response to amine / startle response / dopamine metabolic process / social behavior / monoatomic cation transmembrane transport / response to lithium ion / associative learning / modulation of excitatory postsynaptic potential / regulation of neuronal synaptic plasticity / action potential / cellular response to glycine / monoatomic cation transport / excitatory synapse / positive regulation of excitatory postsynaptic potential / response to light stimulus / positive regulation of protein targeting to membrane / positive regulation of dendritic spine maintenance / monoatomic ion channel complex / Unblocking of NMDA receptors, glutamate binding and activation / long-term memory / cellular response to manganese ion / postsynaptic density, intracellular component / glutamate receptor binding / neuron development / synaptic cleft / prepulse inhibition / multicellular organismal response to stress / phosphatase binding / monoatomic cation channel activity / glutamate-gated receptor activity / calcium ion homeostasis / response to fungicide / cell adhesion molecule binding / regulation of neuron apoptotic process / presynaptic active zone membrane / glutamate-gated calcium ion channel activity / neurogenesis / ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potential
Similarity search - Function
Glutamate [NMDA] receptor, epsilon subunit, C-terminal / N-methyl D-aspartate receptor 2B3 C-terminus / : / : / Ionotropic glutamate receptor, metazoa / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ligand-gated ion channel / : ...Glutamate [NMDA] receptor, epsilon subunit, C-terminal / N-methyl D-aspartate receptor 2B3 C-terminus / : / : / Ionotropic glutamate receptor, metazoa / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ligand-gated ion channel / : / Ionotropic glutamate receptor / Eukaryotic homologues of bacterial periplasmic substrate binding proteins. / Receptor, ligand binding region / Receptor family ligand binding region / Periplasmic binding protein-like II / Periplasmic binding protein-like I / D-Maltodextrin-Binding Protein; domain 2 / 3-Layer(aba) Sandwich / Alpha Beta
Similarity search - Domain/homology
Chem-84J / GLYCINE / Glutamate receptor ionotropic, NMDA 1 / Glutamate receptor ionotropic, NMDA 2A
Similarity search - Component
Biological speciesRattus norvegicus (Norway rat)
MethodX-RAY DIFFRACTION / SYNCHROTRON / MOLECULAR REPLACEMENT / molecular replacement / Resolution: 1.598 Å
AuthorsRomero-Hernandez, A. / Furukawa, H.
Funding support United States, 2items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of Mental Health (NIH/NIMH)MH085926 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)GM105730 United States
CitationJournal: Mol. Pharmacol. / Year: 2017
Title: Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077.
Authors: Romero-Hernandez, A. / Furukawa, H.
History
DepositionDec 14, 2016Deposition site: RCSB / Processing site: RCSB
Revision 1.0May 17, 2017Provider: repository / Type: Initial release
Revision 1.1Jun 7, 2017Group: Database references / Other
Revision 1.2Sep 27, 2017Group: Author supporting evidence / Category: pdbx_audit_support / Item: _pdbx_audit_support.funding_organization
Revision 1.3Nov 27, 2019Group: Author supporting evidence / Category: pdbx_audit_support / Item: _pdbx_audit_support.funding_organization
Revision 1.4Oct 4, 2023Group: Data collection / Database references / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / pdbx_initial_refinement_model
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession
Revision 1.5Oct 30, 2024Group: Structure summary / Category: pdbx_entry_details / pdbx_modification_feature

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Glutamate receptor ionotropic, NMDA 1
B: GLUTAMATE RECEPTOR IONOTROPIC, NMDA 2A
hetero molecules


Theoretical massNumber of molelcules
Total (without water)65,7475
Polymers65,1252
Non-polymers6213
Water7,782432
1


  • Idetical with deposited unit
  • defined by author&software
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
Buried area2630 Å2
ΔGint-5 kcal/mol
Surface area25660 Å2
MethodPISA
Unit cell
Length a, b, c (Å)59.550, 84.227, 121.218
Angle α, β, γ (deg.)90.000, 90.000, 90.000
Int Tables number19
Space group name H-MP212121

-
Components

-
Protein , 2 types, 2 molecules AB

#1: Protein Glutamate receptor ionotropic, NMDA 1 / GluN1 / Glutamate [NMDA] receptor subunit zeta-1 / N-methyl-D-aspartate receptor subunit NR1 / NMD-R1


Mass: 33340.031 Da / Num. of mol.: 1 / Fragment: UNP residues 394-554, 663-800
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Grin1, Nmdar1 / Production host: Escherichia coli (E. coli) / References: UniProt: P35439
#2: Protein GLUTAMATE RECEPTOR IONOTROPIC, NMDA 2A


Mass: 31785.299 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Production host: Escherichia coli (E. coli) / References: UniProt: Q00959*PLUS

-
Non-polymers , 4 types, 435 molecules

#3: Chemical ChemComp-GLY / GLYCINE


Type: peptide linking / Mass: 75.067 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C2H5NO2
#4: Chemical ChemComp-GOL / GLYCEROL / GLYCERIN / PROPANE-1,2,3-TRIOL


Mass: 92.094 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C3H8O3
#5: Chemical ChemComp-84J / [(R)-{[(1S)-1-(4-bromophenyl)ethyl]amino}(2,3-dihydroxyquinoxalin-5-yl)methyl]phosphonic acid


Mass: 454.212 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C17H17BrN3O5P
#6: Water ChemComp-HOH / water


Mass: 18.015 Da / Num. of mol.: 432 / Source method: isolated from a natural source / Formula: H2O

-
Details

Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: X-RAY DIFFRACTION / Number of used crystals: 1

-
Sample preparation

CrystalDensity Matthews: 2.33 Å3/Da / Density % sol: 47.3 %
Crystal growTemperature: 291 K / Method: vapor diffusion, hanging drop / pH: 7
Details: 18% Polyethylene glycol monoethylether 2000 (PEG2000 MME), 100mM HEPES-NaOH pH 7.0, and 75mM NaCl

-
Data collection

DiffractionMean temperature: 100 K
Diffraction sourceSource: SYNCHROTRON / Site: NSLS / Beamline: X29A / Wavelength: 1.1 Å
DetectorType: DECTRIS PILATUS 6M / Detector: PIXEL / Date: Nov 15, 2013
RadiationProtocol: SINGLE WAVELENGTH / Monochromatic (M) / Laue (L): M / Scattering type: x-ray
Radiation wavelengthWavelength: 1.1 Å / Relative weight: 1
ReflectionResolution: 1.598→50 Å / Num. obs: 72757 / % possible obs: 89.5 % / Redundancy: 4.3 % / Biso Wilson estimate: 19.69 Å2 / Rmerge(I) obs: 0.077 / Net I/σ(I): 17.84

-
Phasing

PhasingMethod: molecular replacement

-
Processing

Software
NameVersionClassification
HKL-2000data reduction
HKL-2000data scaling
PHENIX1.10_2155refinement
PDB_EXTRACT3.22data extraction
PHASERphasing
RefinementMethod to determine structure: MOLECULAR REPLACEMENT
Starting model: 4NF8
Resolution: 1.598→49.196 Å / SU ML: 0.2 / Cross valid method: FREE R-VALUE / σ(F): 1.34 / Phase error: 22.21
RfactorNum. reflection% reflection
Rfree0.2041 3652 5.02 %
Rwork0.1885 --
obs0.1893 72757 89.42 %
Solvent computationShrinkage radii: 0.9 Å / VDW probe radii: 1.11 Å
Displacement parametersBiso max: 92.87 Å2 / Biso mean: 24.8213 Å2 / Biso min: 10.25 Å2
Refinement stepCycle: final / Resolution: 1.598→49.196 Å
ProteinNucleic acidLigandSolventTotal
Num. atoms4415 0 38 432 4885
Biso mean--20.73 30.7 -
Num. residues----567
Refine LS restraints
Refine-IDTypeDev idealNumber
X-RAY DIFFRACTIONf_bond_d0.0084549
X-RAY DIFFRACTIONf_angle_d0.936161
X-RAY DIFFRACTIONf_chiral_restr0.057685
X-RAY DIFFRACTIONf_plane_restr0.006786
X-RAY DIFFRACTIONf_dihedral_angle_d13.3862730
LS refinement shell

Refine-ID: X-RAY DIFFRACTION / Rfactor Rfree error: 0 / Total num. of bins used: 26

Resolution (Å)Rfactor RfreeNum. reflection RfreeRfactor RworkNum. reflection RworkNum. reflection all% reflection obs (%)
1.5984-1.61940.347620.33811317137944
1.6194-1.64160.3648890.32441614170356
1.6416-1.6650.31821000.31121899199964
1.665-1.68990.29371190.30712059217871
1.6899-1.71630.32931210.28462297241878
1.7163-1.74440.29661400.25652450259085
1.7444-1.77450.2591470.24292611275889
1.7745-1.80680.25421350.22892715285090
1.8068-1.84150.25191310.21682714284593
1.8415-1.87910.22961320.19782709284192
1.8791-1.920.25181500.20382707285792
1.92-1.96470.22461410.20452765290694
1.9647-2.01380.22751340.20662773290793
2.0138-2.06820.23671360.20322790292695
2.0682-2.12910.25581340.19992855298996
2.1291-2.19780.21951650.18692857302297
2.1978-2.27640.22121630.18732915307898
2.2764-2.36750.22031520.18882913306599
2.3675-2.47530.19571610.19162949311099
2.4753-2.60580.23581500.19342955310599
2.6058-2.7690.21131620.198829723134100
2.769-2.98280.20791600.198229953155100
2.9828-3.28290.22531720.185429863158100
3.2829-3.75780.15431540.167830353189100
3.7578-4.73380.14881640.143430613225100
4.7338-49.21910.15351780.162231923370100

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more