[English] 日本語
Yorodumi- PDB-4v6y: E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in classic pre-trans... -
+Open data
-Basic information
Entry | Database: PDB / ID: 4v6y | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex in classic pre-translocation state (pre1a) | ||||||||||||
Components |
| ||||||||||||
Keywords | RIBOSOME / cryo-EM refinement / tRNA / translocation intermediate | ||||||||||||
Function / homology | Function and homology information stringent response / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / misfolded RNA binding / Group I intron splicing / RNA folding / transcriptional attenuation / endoribonuclease inhibitor activity / RNA-binding transcription regulator activity / positive regulation of ribosome biogenesis ...stringent response / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / misfolded RNA binding / Group I intron splicing / RNA folding / transcriptional attenuation / endoribonuclease inhibitor activity / RNA-binding transcription regulator activity / positive regulation of ribosome biogenesis / negative regulation of cytoplasmic translation / four-way junction DNA binding / translational termination / DnaA-L2 complex / translation repressor activity / negative regulation of DNA-templated DNA replication initiation / negative regulation of translational initiation / regulation of mRNA stability / mRNA regulatory element binding translation repressor activity / ribosome assembly / assembly of large subunit precursor of preribosome / positive regulation of RNA splicing / transcription elongation factor complex / cytosolic ribosome assembly / regulation of DNA-templated transcription elongation / DNA endonuclease activity / response to reactive oxygen species / transcription antitermination / regulation of cell growth / DNA-templated transcription termination / maintenance of translational fidelity / response to radiation / mRNA 5'-UTR binding / ribosomal small subunit biogenesis / small ribosomal subunit rRNA binding / large ribosomal subunit / ribosome biogenesis / ribosome binding / regulation of translation / ribosomal small subunit assembly / small ribosomal subunit / 5S rRNA binding / large ribosomal subunit rRNA binding / transferase activity / cytosolic small ribosomal subunit / ribosomal large subunit assembly / cytoplasmic translation / cytosolic large ribosomal subunit / tRNA binding / molecular adaptor activity / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / response to antibiotic / negative regulation of DNA-templated transcription / mRNA binding / DNA binding / RNA binding / zinc ion binding / membrane / cytosol / cytoplasm Similarity search - Function | ||||||||||||
Biological species | Escherichia coli (E. coli) | ||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 12 Å | ||||||||||||
Authors | Blau, C. / Bock, L.V. / Schroder, G.F. / Davydov, I. / Fischer, N. / Stark, H. / Rodnina, M.V. / Vaiana, A.C. / Grubmuller, H. | ||||||||||||
Citation | Journal: Nat Struct Mol Biol / Year: 2013 Title: Energy barriers and driving forces in tRNA translocation through the ribosome. Authors: Lars V Bock / Christian Blau / Gunnar F Schröder / Iakov I Davydov / Niels Fischer / Holger Stark / Marina V Rodnina / Andrea C Vaiana / Helmut Grubmüller / Abstract: During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics ...During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means. | ||||||||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 4v6y.cif.gz | 3.3 MB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb4v6y.ent.gz | Display | PDB format | |
PDBx/mmJSON format | 4v6y.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 4v6y_validation.pdf.gz | 1.5 MB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 4v6y_full_validation.pdf.gz | 2.4 MB | Display | |
Data in XML | 4v6y_validation.xml.gz | 293.6 KB | Display | |
Data in CIF | 4v6y_validation.cif.gz | 484.5 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/v6/4v6y ftp://data.pdbj.org/pub/pdb/validation_reports/v6/4v6y | HTTPS FTP |
-Related structure data
Related structure data | 1716M 2472C 2473C 2474C 2475C 4v6zC 4v70C 4v71C 4v72C 4v73C 4v74C 4v75C 4v76C 4v77C 4v78C 4v79C 4v7aC M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
-30S ribosomal protein ... , 20 types, 20 molecules ABACADAEAFAGAHAIAJAKALAMANAOAPAQARASATAU
#1: Protein | Mass: 24277.992 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7V0 |
---|---|
#2: Protein | Mass: 23207.990 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7V3 |
#3: Protein | Mass: 23514.199 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7V8 |
#4: Protein | Mass: 15828.328 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7W1 |
#5: Protein | Mass: 11667.380 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P02358 |
#6: Protein | Mass: 16788.453 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P02359 |
#7: Protein | Mass: 14146.557 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7W7 |
#8: Protein | Mass: 14580.919 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7X3 |
#9: Protein | Mass: 11221.034 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7R5 |
#10: Protein | Mass: 12513.237 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7R9 |
#11: Protein | Mass: 13768.157 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7S3 |
#12: Protein | Mass: 12657.843 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7S9 |
#13: Protein | Mass: 11606.560 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0AG59 |
#14: Protein | Mass: 10290.816 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0ADZ4 |
#15: Protein | Mass: 9063.426 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7T3 |
#16: Protein | Mass: 9287.992 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0AG63 |
#17: Protein | Mass: 6490.523 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7T7 |
#18: Protein | Mass: 9081.672 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7U3 |
#19: Protein | Mass: 9532.228 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P0A7U7 |
#20: Protein | Mass: 6091.125 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 / References: UniProt: P68679 |
-RNA chain , 6 types, 6 molecules AAA1A2A3BABB
#21: RNA chain | Mass: 496892.375 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 |
---|---|
#22: RNA chain | Mass: 24617.768 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 |
#23: RNA chain | Mass: 4693.746 Da / Num. of mol.: 1 / Source method: obtained synthetically / Details: mRNA |
#24: RNA chain | Mass: 24848.918 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 |
#54: RNA chain | Mass: 941306.188 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 |
#55: RNA chain | Mass: 38177.762 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Escherichia coli (E. coli) / Strain: K12 |
+50S ribosomal protein ... , 30 types, 30 molecules BCBDBEBFBGBHBIBJBKBLBMBNBOBPBQBRBSBTBUBVBWBXBYBZB0B1B2B3B4B5
-Non-polymers , 2 types, 2 molecules
#57: Chemical | ChemComp-VAL / |
---|---|
#58: Chemical | ChemComp-FME / |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component | Name: E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex / Type: RIBOSOME |
---|---|
Buffer solution | Name: 50 mM Tris-HCl, 70 mM NH4Cl, 30 mM KCl, 7 mM MgCl2, 0.6 mM spermine, 0.4 mM spermidine pH: 7.5 Details: 50 mM Tris-HCl, 70 mM NH4Cl, 30 mM KCl, 7 mM MgCl2, 0.6 mM spermine, 0.4 mM spermidine |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Instrument: HOMEMADE PLUNGER / Cryogen name: ETHANE / Humidity: 75 % Details: Manual blotting for about 2 seconds prior to plunging into liquid ethane (custom-built CEVS vitrification instrument with dew point temperature adjusted to 18 degrees C) Method: Manual blotting for about 2 seconds Time resolved state: Samples were vitrified at different time points along the reaction coordinate (1, 2, 5 and 20 minutes after addition of deacylated tRNAfMet to 70S-fMetVal-tRNAVal complexes). |
-Electron microscopy imaging
Microscopy | Model: FEI/PHILIPS CM200FEG / Date: May 11, 2008 Details: Objective lens astigmatism was corrected at 200,000 times magnification |
---|---|
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 160 kV / Illumination mode: SPOT SCAN |
Electron lens | Mode: BRIGHT FIELD / Nominal magnification: 161000 X / Calibrated magnification: 162740 X / Nominal defocus max: 2000 nm / Nominal defocus min: 500 nm / Cs: 2 mm |
Specimen holder | Specimen holder model: GATAN LIQUID NITROGEN / Specimen holder type: Eucentric / Temperature: 77 K |
Image recording | Electron dose: 20 e/Å2 / Film or detector model: GENERIC TVIPS (4k x 4k) / Details: 4k CCD camera (TVIPS) |
-Processing
EM software |
| |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Details: local | |||||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | |||||||||||||||
3D reconstruction | Method: Projection matching / Resolution: 12 Å / Resolution method: FSC 0.5 CUT-OFF / Num. of particles: 14235 / Nominal pixel size: 1.87 Å / Actual pixel size: 1.87 Å Details: Final maps were calculated from 13 datasets acquired at different time points, computationally sorted into distinct substates. Symmetry type: POINT | |||||||||||||||
Atomic model building | Protocol: FLEXIBLE FIT / Space: REAL / Target criteria: Cross-correlation coefficient Details: METHOD--Cross-correlation gradient based REFINEMENT PROTOCOL--flexible fitting, dynamic elastic network | |||||||||||||||
Atomic model building |
|