- EMDB-8345: Cryo-EM structure of the human 80S ribosome at 3.6 Angstrom resolution -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-8345
タイトル
Cryo-EM structure of the human 80S ribosome at 3.6 Angstrom resolution
マップデータ
human ribosome
試料
複合体: Human ribosome (Jurkat)
機能・相同性
機能・相同性情報
translation at presynapse / exit from mitosis / optic nerve development / response to insecticide / eukaryotic 80S initiation complex / negative regulation of protein neddylation / regulation of translation involved in cellular response to UV / axial mesoderm development / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition ...translation at presynapse / exit from mitosis / optic nerve development / response to insecticide / eukaryotic 80S initiation complex / negative regulation of protein neddylation / regulation of translation involved in cellular response to UV / axial mesoderm development / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition / retinal ganglion cell axon guidance / ribosomal protein import into nucleus / oxidized pyrimidine DNA binding / response to TNF agonist / negative regulation of endoplasmic reticulum unfolded protein response / positive regulation of base-excision repair / protein-DNA complex disassembly / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / 90S preribosome assembly / protein tyrosine kinase inhibitor activity / positive regulation of endodeoxyribonuclease activity / nucleolus organization / IRE1-RACK1-PP2A complex / positive regulation of Golgi to plasma membrane protein transport / TNFR1-mediated ceramide production / alpha-beta T cell differentiation / negative regulation of DNA repair / negative regulation of RNA splicing / GAIT complex / positive regulation of DNA damage response, signal transduction by p53 class mediator / TORC2 complex binding / G1 to G0 transition / supercoiled DNA binding / NF-kappaB complex / neural crest cell differentiation / oxidized purine DNA binding / cysteine-type endopeptidase activator activity involved in apoptotic process / middle ear morphogenesis / positive regulation of ubiquitin-protein transferase activity / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / negative regulation of bicellular tight junction assembly / regulation of establishment of cell polarity / ubiquitin-like protein conjugating enzyme binding / rRNA modification in the nucleus and cytosol / negative regulation of phagocytosis / erythrocyte homeostasis / Formation of the ternary complex, and subsequently, the 43S complex / cytoplasmic side of rough endoplasmic reticulum membrane / negative regulation of ubiquitin protein ligase activity / laminin receptor activity / protein kinase A binding / homeostatic process / ion channel inhibitor activity / Ribosomal scanning and start codon recognition / pigmentation / Translation initiation complex formation / positive regulation of mitochondrial depolarization / macrophage chemotaxis / lung morphogenesis / positive regulation of T cell receptor signaling pathway / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / positive regulation of natural killer cell proliferation / male meiosis I / monocyte chemotaxis / TOR signaling / negative regulation of translational frameshifting / BH3 domain binding / positive regulation of activated T cell proliferation / Protein hydroxylation / SARS-CoV-1 modulates host translation machinery / iron-sulfur cluster binding / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / cellular response to ethanol / regulation of cell division / mTORC1-mediated signalling / Peptide chain elongation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / cellular response to actinomycin D / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Eukaryotic Translation Termination / blastocyst development / positive regulation of GTPase activity / negative regulation of ubiquitin-dependent protein catabolic process / SRP-dependent cotranslational protein targeting to membrane / Response of EIF2AK4 (GCN2) to amino acid deficiency / protein serine/threonine kinase inhibitor activity / ubiquitin ligase inhibitor activity / Viral mRNA Translation / positive regulation of signal transduction by p53 class mediator / negative regulation of respiratory burst involved in inflammatory response / protein localization to nucleus / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / positive regulation of protein binding 類似検索 - 分子機能
40S ribosomal protein SA / Ribosomal protein L6, N-terminal / 40S ribosomal protein SA, C-terminal domain / Ribosomal protein L6, N-terminal domain / 40S ribosomal protein SA C-terminus / Ubiquitin-like protein FUBI / Ribosomal protein L30e / Ribosomal protein L28e / Ribosomal L15/L27a, N-terminal / Ribosomal protein L23 ...40S ribosomal protein SA / Ribosomal protein L6, N-terminal / 40S ribosomal protein SA, C-terminal domain / Ribosomal protein L6, N-terminal domain / 40S ribosomal protein SA C-terminus / Ubiquitin-like protein FUBI / Ribosomal protein L30e / Ribosomal protein L28e / Ribosomal L15/L27a, N-terminal / Ribosomal protein L23 / Ribosomal protein L2, archaeal-type / Ribosomal L28e/Mak16 / Ribosomal L28e protein family / metallochaperone-like domain / TRASH domain / Ribosomal protein L1, conserved site / Ribosomal protein L1 signature. / Ribosomal protein L1 / : / Ribosomal protein S26e signature. / Ribosomal protein S21e, conserved site / Ribosomal protein S21e signature. / Ribosomal protein L1, 3-layer alpha/beta-sandwich / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein S26e / Ribosomal protein S26e superfamily / Ribosomal protein S26e / : / Ribosomal protein S12e signature. / Ribosomal protein L29e / Ribosomal L29e protein family / Ribosomal protein S12e / Small (40S) ribosomal subunit Asc1/RACK1 / Ribosomal protein S5, eukaryotic/archaeal / Ribosomal protein L27e, conserved site / Ribosomal protein L27e signature. / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L22e protein family / Ribosomal protein S21e / Ribosomal protein S21e superfamily / Ribosomal protein S21e / Ribosomal protein S19e, conserved site / Ribosomal protein S19e signature. / Ribosomal protein S2, eukaryotic / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / Ribosomal protein L13e / Ribosomal protein L13e / Ribosomal protein L19, eukaryotic / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / S27a-like superfamily / Ribosomal protein L44e signature. / 40S Ribosomal protein S10 / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19e signature. / Ribosomal protein L24e, conserved site / : / Ribosomal protein L24e signature. / 60S ribosomal protein L18a/ L20, eukaryotes / Ribosomal protein L10e / Ribosomal protein L6e signature. / Plectin/S10, N-terminal / Plectin/S10 domain / Ribosomal protein L34e, conserved site / Ribosomal protein L34e signature. / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein S10, eukaryotic/archaeal / : / Ribosomal protein L5 eukaryotic, C-terminal / Ribosomal L18 C-terminal region / Ribosomal protein S30 / : / Ribosomal L40e family / Ribosomal protein S30 / Ribosomal protein L23/L25, N-terminal / Ribosomal protein L23, N-terminal domain / Ribosomal protein S7e signature. / Ribosomal protein L44e / Ribosomal protein L44 / Ribosomal protein S25 / S25 ribosomal protein / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal protein L30e signature 1. / Ribosomal protein S8e subdomain, eukaryotes / Ribosomal_L40e / Ribosomal protein L40e / Ribosomal protein L40e superfamily / Ribosomal protein L36e signature. / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A / Ribosomal protein S27a / Ribosomal protein S17e, conserved site 類似検索 - ドメイン・相同性
Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL6 ...Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS5 / Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein eL22 / Large ribosomal subunit protein uL4 / Small ribosomal subunit protein eS19 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL13 / Small ribosomal subunit protein eS27 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein eL21 / Large ribosomal subunit protein eL28 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS7 / Small ribosomal subunit protein eS10 / Large ribosomal subunit protein eL29 / Large ribosomal subunit protein eL34 / Large ribosomal subunit protein eL14 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein eS1 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein eL15 / Large ribosomal subunit protein eL27 / Large ribosomal subunit protein eL43 / Large ribosomal subunit protein eL37 / Small ribosomal subunit protein eS7 / Small ribosomal subunit protein eS8 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS15 / Small ribosomal subunit protein uS17 / Large ribosomal subunit protein eL8 / Small ribosomal subunit protein eS4, X isoform / Large ribosomal subunit protein uL23 / Small ribosomal subunit protein eS6 / Large ribosomal subunit protein uL14 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein eS24 / Small ribosomal subunit protein eS25 / Small ribosomal subunit protein eS26 / Small ribosomal subunit protein eS28 / Ubiquitin-like FUBI-ribosomal protein eS30 fusion protein / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein eL31 / Large ribosomal subunit protein uL1 / Large ribosomal subunit protein eL32 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL2 / Ubiquitin-ribosomal protein eS31 fusion protein / Ubiquitin-ribosomal protein eL40 fusion protein / Large ribosomal subunit protein eL38 / Small ribosomal subunit protein eS21 / Small ribosomal subunit protein RACK1 / Large ribosomal subunit protein eL24 / Large ribosomal subunit protein eL42 / Large ribosomal subunit protein eL19 / Large ribosomal subunit protein eL20 / Large ribosomal subunit protein eL6 / Large ribosomal subunit protein eL18 / Ribosomal protein uL16-like / Large ribosomal subunit protein eL36 類似検索 - 構成要素
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
GM071940
米国
National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR)
DE025567
米国
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)
AI094386
米国
National Institutes of Health/Office of the Director
1S10OD018111
米国
National Institutes of Health/National Center for Research Resources (NIH/NCRR)
1S10RR23057
米国
National Science Foundation (NSF, United States)
DBI-338135
米国
引用
ジャーナル: Nat Commun / 年: 2016 タイトル: Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. 著者: Xing Zhang / Mason Lai / Winston Chang / Iris Yu / Ke Ding / Jan Mrazek / Hwee L Ng / Otto O Yang / Dmitri A Maslov / Z Hong Zhou / 要旨: The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome- ...The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome-targeting antibiotics. Here, by direct electron-counting cryoEM, we have determined the structures of the Leishmania donovani and human ribosomes at 2.9 Å and 3.6 Å, respectively. Our structure of the leishmanial ribosome elucidates the organization of the six fragments of its large subunit rRNA (as opposed to a single 28S rRNA in most eukaryotes, including humans) and reveals atomic details of a unique 20 amino acid extension of the uL13 protein that pins down the ends of three of the rRNA fragments. The structure also fashions many large rRNA expansion segments. Direct comparison of our human and leishmanial ribosome structures at the decoding A-site sheds light on how the bacterial ribosome-targeting drug paromomycin selectively inhibits the eukaryotic L. donovani, but not human, ribosome.