[English] 日本語
Yorodumi
- PDB-6o06: Extracellular factors prime enterovirus particles for uncoating -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6o06
TitleExtracellular factors prime enterovirus particles for uncoating
Components
  • VP1
  • VP2
  • VP3
KeywordsVIRUS / expanded particle
Function / homology
Function and homology information


caveolin-mediated endocytosis of virus by host cell / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of RIG-I activity / picornain 2A / symbiont-mediated suppression of host mRNA export from nucleus / symbiont genome entry into host cell via pore formation in plasma membrane / picornain 3C / T=pseudo3 icosahedral viral capsid / host cell cytoplasmic vesicle membrane / : / nucleoside-triphosphate phosphatase ...caveolin-mediated endocytosis of virus by host cell / symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of RIG-I activity / picornain 2A / symbiont-mediated suppression of host mRNA export from nucleus / symbiont genome entry into host cell via pore formation in plasma membrane / picornain 3C / T=pseudo3 icosahedral viral capsid / host cell cytoplasmic vesicle membrane / : / nucleoside-triphosphate phosphatase / protein complex oligomerization / monoatomic ion channel activity / RNA helicase activity / DNA replication / induction by virus of host autophagy / RNA-directed RNA polymerase / symbiont-mediated suppression of host gene expression / viral RNA genome replication / cysteine-type endopeptidase activity / RNA-dependent RNA polymerase activity / DNA-templated transcription / host cell nucleus / virion attachment to host cell / structural molecule activity / ATP hydrolysis activity / proteolysis / RNA binding / ATP binding / membrane / metal ion binding
Similarity search - Function
Jelly Rolls - #20 / Picornavirus coat protein VP4 superfamily / Poliovirus 3A protein-like / Poliovirus 3A protein like / Picornavirus 2B protein / Poliovirus core protein 3a, soluble domain / Picornavirus 2B protein / Peptidase C3, picornavirus core protein 2A / Picornavirus core protein 2A / Picornavirus coat protein VP4 ...Jelly Rolls - #20 / Picornavirus coat protein VP4 superfamily / Poliovirus 3A protein-like / Poliovirus 3A protein like / Picornavirus 2B protein / Poliovirus core protein 3a, soluble domain / Picornavirus 2B protein / Peptidase C3, picornavirus core protein 2A / Picornavirus core protein 2A / Picornavirus coat protein VP4 / Picornavirus coat protein (VP4) / Picornavirales 3C/3C-like protease domain / Picornavirales 3C/3C-like protease domain profile. / Peptidase C3A/C3B, picornaviral / 3C cysteine protease (picornain 3C) / Picornavirus capsid / picornavirus capsid protein / Helicase, superfamily 3, single-stranded RNA virus / Superfamily 3 helicase of positive ssRNA viruses domain profile. / Helicase, superfamily 3, single-stranded DNA/RNA virus / RNA helicase / Picornavirus/Calicivirus coat protein / Viral coat protein subunit / RNA-directed RNA polymerase, C-terminal domain / Viral RNA-dependent RNA polymerase / Reverse transcriptase/Diguanylate cyclase domain / Jelly Rolls / RNA-directed RNA polymerase, catalytic domain / RdRp of positive ssRNA viruses catalytic domain profile. / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / Peptidase S1, PA clan, chymotrypsin-like fold / Peptidase S1, PA clan / DNA/RNA polymerase superfamily / Sandwich / P-loop containing nucleoside triphosphate hydrolase / Mainly Beta
Similarity search - Domain/homology
Biological speciesEchovirus E1
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsDomanska, A. / Ruokolainen, V. / Pelliccia, M. / Laajala, M. / Butcher, S.J. / Marjomaki, V.S.
Funding support Finland, 4items
OrganizationGrant numberCountry
Academy of Finland275199 Finland
Academy of Finland315950 Finland
Sigrid Juselius Foundation Finland
Jane and Aatos Erkko Foundation Finland
CitationJournal: J Virol / Year: 2019
Title: Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation.
Authors: Visa Ruokolainen / Aušra Domanska / Mira Laajala / Maria Pelliccia / Sarah J Butcher / Varpu Marjomäki /
Abstract: There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with ...There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectivity of this intermediate was retained, as judged by end-point titration. Cryo-electron microscopy reconstruction of the virions treated with albumin and high potassium, low sodium, and low calcium concentrations resulted in a 3.6-Å resolution model revealing a fenestrated capsid showing 4% expansion and loss of the pocket factor, similarly to altered (A) particles described for other enteroviruses. The dimer interface between VP2 molecules was opened, the VP1 N termini disordered and most likely externalized. The RNA was clearly visible, anchored to the capsid. The results presented here suggest that extracellular albumin, partially saturated with fatty acids, likely leads to the formation of the infectious uncoating intermediate prior to the engagement with the cellular receptor. In addition, changes in mono- and divalent cations, likely occurring in endosomes, promote capsid opening and genome release. There is limited information about the uncoating of enteroviruses under physiological conditions. Here, we focused on physiologically relevant factors that likely contribute to opening of echovirus 1 and other B-group enteroviruses. By combining biochemical and structural data, we show that, before entering cells, extracellular albumin is capable of priming the virus into a metastable yet infectious intermediate state. The ionic changes that are suggested to occur in endosomes can further contribute to uncoating and promote genome release, once the viral particle is endocytosed. Importantly, we provide a detailed high-resolution structure of a virion after treatment with albumin and a preset ion composition, showing pocket factor release, capsid expansion, and fenestration and the clearly visible genome still anchored to the capsid. This study provides valuable information about the physiological factors that contribute to the opening of B group enteroviruses.
History
DepositionFeb 15, 2019Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jun 12, 2019Provider: repository / Type: Initial release
Revision 1.1Nov 13, 2019Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.pdbx_database_id_PubMed ..._citation.journal_volume / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID / _citation_author.name
Revision 1.2Mar 20, 2024Group: Data collection / Database references ...Data collection / Database references / Derived calculations / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / em_3d_fitting_list / pdbx_initial_refinement_model / pdbx_struct_oper_list
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession ..._database_2.pdbx_DOI / _database_2.pdbx_database_accession / _em_3d_fitting_list.accession_code / _em_3d_fitting_list.initial_refinement_model_id / _em_3d_fitting_list.source_name / _em_3d_fitting_list.type / _pdbx_struct_oper_list.name / _pdbx_struct_oper_list.symmetry_operation / _pdbx_struct_oper_list.type

-
Structure visualization

Movie
  • Biological unit as complete icosahedral assembly
  • Imaged by Jmol
  • Download
  • Biological unit as icosahedral pentamer
  • Imaged by Jmol
  • Download
  • Biological unit as icosahedral 23 hexamer
  • Imaged by Jmol
  • Download
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Simplified surface model + fitted atomic model
  • EMDB-0565
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-0565
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: VP1
B: VP2
C: VP3


Theoretical massNumber of molelcules
Total (without water)86,2023
Polymers86,2023
Non-polymers00
Water0
1
A: VP1
B: VP2
C: VP3
x 60


Theoretical massNumber of molelcules
Total (without water)5,172,115180
Polymers5,172,115180
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation59
2


  • Idetical with deposited unit
  • icosahedral asymmetric unit
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
3
A: VP1
B: VP2
C: VP3
x 5


  • icosahedral pentamer
  • 431 kDa, 15 polymers
Theoretical massNumber of molelcules
Total (without water)431,01015
Polymers431,01015
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation4
4
A: VP1
B: VP2
C: VP3
x 6


  • icosahedral 23 hexamer
  • 517 kDa, 18 polymers
Theoretical massNumber of molelcules
Total (without water)517,21118
Polymers517,21118
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation5
5


  • Idetical with deposited unit in distinct coordinate
  • icosahedral asymmetric unit, std point frame
TypeNameSymmetry operationNumber
transform to point frame1
SymmetryPoint symmetry: (Schoenflies symbol: I (icosahedral))

-
Components

#1: Protein VP1


Mass: 31604.373 Da / Num. of mol.: 1 / Fragment: UNP residues 570-850 / Source method: isolated from a natural source / Source: (natural) Echovirus E1 / References: UniProt: O91734
#2: Protein VP2


Mass: 28126.465 Da / Num. of mol.: 1 / Fragment: UNP residues 77-330 / Source method: isolated from a natural source / Source: (natural) Echovirus E1 / References: UniProt: O91734
#3: Protein VP3


Mass: 26471.074 Da / Num. of mol.: 1 / Fragment: UNP residues 331-569 / Source method: isolated from a natural source / Source: (natural) Echovirus E1 / References: UniProt: O91734

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Echovirus E1 / Type: VIRUS / Details: Echovirus 1 was purified from infected GMK cells / Entity ID: all / Source: NATURAL
Molecular weightUnits: MEGADALTONS / Experimental value: NO
Source (natural)Organism: Echovirus E1
Details of virusEmpty: NO / Enveloped: NO / Isolate: OTHER / Type: VIRION
Natural hostOrganism: Homo sapiens
Virus shellName: icosahedralIcosahedron / Diameter: 300 nm / Triangulation number (T number): 1
Buffer solutionpH: 7.2
Details: 29 mM sodium chloride, 28 mM potassium ion, 0.145 mM magnesium chloride, 8 mM phosphate dibasic, 2 mM phosphate monobasic, 0.0093% faf-BSA
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid type: Quantifoil R2/2
VitrificationInstrument: HOMEMADE PLUNGER / Cryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Talos Arctica / Image courtesy: FEI Company
MicroscopyModel: FEI TALOS ARCTICA
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Specimen holderCryogen: NITROGEN
Image recordingAverage exposure time: 47.8 sec. / Electron dose: 30 e/Å2 / Film or detector model: FEI FALCON III (4k x 4k)

-
Processing

EM software
IDNameVersionCategory
4GctfCTF correction
7UCSF Chimera1.12model fitting
9RELION2.1initial Euler assignment
10RELION2.1final Euler assignment
11RELION2.1classification
12RELION2.13D reconstruction
13Coot0.8.8model refinement
14MDFFmodel refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: I (icosahedral)
3D reconstructionResolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 14615 / Symmetry type: POINT
Atomic model buildingProtocol: FLEXIBLE FIT / Space: REAL
Atomic model buildingPDB-ID: 4JGY
Accession code: 4JGY / Source name: PDB / Type: experimental model

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more