[English] 日本語
Yorodumi
- PDB-6aku: Cryo-EM structure of CVA10 empty particle -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6aku
TitleCryo-EM structure of CVA10 empty particle
Components
  • VP1
  • VP2
  • VP3
KeywordsVIRUS / picornavirus uncoating / receptor binding
Function / homology
Function and homology information


symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of MDA-5 activity / picornain 2A / symbiont-mediated suppression of host mRNA export from nucleus / symbiont genome entry into host cell via pore formation in plasma membrane / picornain 3C / T=pseudo3 icosahedral viral capsid / host cell cytoplasmic vesicle membrane / endocytosis involved in viral entry into host cell / cytoplasmic vesicle membrane / : ...symbiont-mediated suppression of host cytoplasmic pattern recognition receptor signaling pathway via inhibition of MDA-5 activity / picornain 2A / symbiont-mediated suppression of host mRNA export from nucleus / symbiont genome entry into host cell via pore formation in plasma membrane / picornain 3C / T=pseudo3 icosahedral viral capsid / host cell cytoplasmic vesicle membrane / endocytosis involved in viral entry into host cell / cytoplasmic vesicle membrane / : / nucleoside-triphosphate phosphatase / protein complex oligomerization / monoatomic ion channel activity / RNA helicase activity / induction by virus of host autophagy / RNA-directed RNA polymerase / symbiont entry into host cell / symbiont-mediated suppression of host gene expression / viral RNA genome replication / cysteine-type endopeptidase activity / RNA-dependent RNA polymerase activity / DNA-templated transcription / host cell nucleus / structural molecule activity / virion attachment to host cell / ATP hydrolysis activity / proteolysis / RNA binding / ATP binding / metal ion binding
Similarity search - Function
Jelly Rolls - #20 / Poliovirus 3A protein-like / Poliovirus 3A protein like / Picornavirus 2B protein / Poliovirus core protein 3a, soluble domain / Picornavirus 2B protein / Peptidase C3, picornavirus core protein 2A / Picornavirus core protein 2A / Picornavirus coat protein VP4 / Picornavirus coat protein (VP4) ...Jelly Rolls - #20 / Poliovirus 3A protein-like / Poliovirus 3A protein like / Picornavirus 2B protein / Poliovirus core protein 3a, soluble domain / Picornavirus 2B protein / Peptidase C3, picornavirus core protein 2A / Picornavirus core protein 2A / Picornavirus coat protein VP4 / Picornavirus coat protein (VP4) / Picornavirales 3C/3C-like protease domain / Picornavirales 3C/3C-like protease domain profile. / Peptidase C3A/C3B, picornaviral / 3C cysteine protease (picornain 3C) / Picornavirus capsid / picornavirus capsid protein / Helicase, superfamily 3, single-stranded RNA virus / Superfamily 3 helicase of positive ssRNA viruses domain profile. / Helicase, superfamily 3, single-stranded DNA/RNA virus / RNA helicase / Picornavirus/Calicivirus coat protein / Viral coat protein subunit / RNA-directed RNA polymerase, C-terminal domain / Viral RNA-dependent RNA polymerase / Reverse transcriptase/Diguanylate cyclase domain / Jelly Rolls / RNA-directed RNA polymerase, catalytic domain / RdRp of positive ssRNA viruses catalytic domain profile. / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / Peptidase S1, PA clan, chymotrypsin-like fold / DNA/RNA polymerase superfamily / Peptidase S1, PA clan / Sandwich / P-loop containing nucleoside triphosphate hydrolase / Mainly Beta
Similarity search - Domain/homology
Genome polyprotein / Genome polyprotein / Genome polyprotein
Similarity search - Component
Biological speciesCoxsackievirus A10
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.7 Å
AuthorsZhu, L. / Sun, Y. / Fan, J.Y. / Zhu, B. / Cao, L. / Gao, Q. / Zhang, Y.J. / Liu, H.R. / Rao, Z.H. / Wang, X.X.
CitationJournal: Nat Commun / Year: 2018
Title: Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating.
Authors: Ling Zhu / Yao Sun / Jinyan Fan / Bin Zhu / Lei Cao / Qiang Gao / Yanjun Zhang / Hongrong Liu / Zihe Rao / Xiangxi Wang /
Abstract: Coxsackievirus A10 (CVA10), a human type-A Enterovirus (HEV-A), can cause diseases ranging from hand-foot-and-mouth disease to polio-myelitis-like disease. CVA10, together with some other HEV-As, ...Coxsackievirus A10 (CVA10), a human type-A Enterovirus (HEV-A), can cause diseases ranging from hand-foot-and-mouth disease to polio-myelitis-like disease. CVA10, together with some other HEV-As, utilizing the molecule KREMEN1 as an entry receptor, constitutes a KREMEN1-dependent subgroup within HEV-As. Currently, there is no vaccine or antiviral therapy available for treating diseases caused by CVA10. The atomic-resolution structure of the CVA10 virion, which is within the KREMEN1-dependent subgroup, shows significant conformational differences in the putative receptor binding sites and serotype-specific epitopes, when compared to the SCARB2-dependent subgroup of HEV-A, such as EV71, highlighting specific differences between the sub-groups. We also report two expanded structures of CVA10, an empty particle and uncoating intermediate at atomic resolution, as well as a medium-resolution genome structure reconstructed using a symmetry-mismatch method. Structural comparisons coupled with previous results, reveal an ordered signal transmission process for enterovirus uncoating, converting exo-genetic receptor-attachment inputs into a generic RNA release mechanism.
History
DepositionSep 3, 2018Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Jan 16, 2019Provider: repository / Type: Initial release
Revision 1.1Mar 27, 2024Group: Data collection / Database references / Derived calculations
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / pdbx_struct_oper_list
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession ..._database_2.pdbx_DOI / _database_2.pdbx_database_accession / _pdbx_struct_oper_list.name / _pdbx_struct_oper_list.symmetry_operation / _pdbx_struct_oper_list.type

-
Structure visualization

Movie
  • Biological unit as complete icosahedral assembly
  • Imaged by Jmol
  • Download
  • Biological unit as icosahedral pentamer
  • Imaged by Jmol
  • Download
  • Biological unit as icosahedral 23 hexamer
  • Imaged by Jmol
  • Download
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Simplified surface model + fitted atomic model
  • EMDB-9644
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-9644
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: VP1
B: VP2
C: VP3


Theoretical massNumber of molelcules
Total (without water)87,2953
Polymers87,2953
Non-polymers00
Water0
1
A: VP1
B: VP2
C: VP3
x 60


Theoretical massNumber of molelcules
Total (without water)5,237,719180
Polymers5,237,719180
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation59
2


  • Idetical with deposited unit
  • icosahedral asymmetric unit
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
3
A: VP1
B: VP2
C: VP3
x 5


  • icosahedral pentamer
  • 436 kDa, 15 polymers
Theoretical massNumber of molelcules
Total (without water)436,47715
Polymers436,47715
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation4
4
A: VP1
B: VP2
C: VP3
x 6


  • icosahedral 23 hexamer
  • 524 kDa, 18 polymers
Theoretical massNumber of molelcules
Total (without water)523,77218
Polymers523,77218
Non-polymers00
Water0
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
point symmetry operation5
5


  • Idetical with deposited unit in distinct coordinate
  • icosahedral asymmetric unit, std point frame
TypeNameSymmetry operationNumber
transform to point frame1
SymmetryPoint symmetry: (Schoenflies symbol: I (icosahedral))

-
Components

#1: Protein VP1


Mass: 33232.383 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Coxsackievirus A10 / Production host: Chlorocebus aethiops (grivet) / References: UniProt: W0G0K3
#2: Protein VP2


Mass: 27783.105 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Coxsackievirus A10 / Production host: Chlorocebus aethiops (grivet) / References: UniProt: A0A0C5AZ80
#3: Protein VP3


Mass: 26279.826 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Coxsackievirus A10 / Production host: Chlorocebus aethiops (grivet) / References: UniProt: A0A0C5AWF6

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Coxsackievirus A10 / Type: VIRUS / Entity ID: all / Source: RECOMBINANT
Source (natural)Organism: Coxsackievirus A10
Source (recombinant)Organism: Chlorocebus aethiops (grivet)
Details of virusEmpty: NO / Enveloped: NO / Isolate: SEROTYPE / Type: VIRION
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 25 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.10.1_2155: / Classification: refinement
CTF correctionType: NONE
3D reconstructionResolution: 2.7 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 22725 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0085099
ELECTRON MICROSCOPYf_angle_d0.736972
ELECTRON MICROSCOPYf_dihedral_angle_d10.3414014
ELECTRON MICROSCOPYf_chiral_restr0.048785
ELECTRON MICROSCOPYf_plane_restr0.006890

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more