[English] 日本語
Yorodumi
- EMDB-9510: Cryo-EM map of the RP region (Class2) of human 26S proteasome -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-9510
TitleCryo-EM map of the RP region (Class2) of human 26S proteasome
Map dataRP class2
Sample
  • Complex: human 26S proteasome
Function / homology
Function and homology information


negative regulation of ERAD pathway / positive regulation of inclusion body assembly / Impaired BRCA2 translocation to the nucleus / Impaired BRCA2 binding to SEM1 (DSS1) / thyrotropin-releasing hormone receptor binding / modulation by host of viral transcription / meiosis I / Hydrolases; Acting on peptide bonds (peptidases); Omega peptidases / proteasome accessory complex / integrator complex ...negative regulation of ERAD pathway / positive regulation of inclusion body assembly / Impaired BRCA2 translocation to the nucleus / Impaired BRCA2 binding to SEM1 (DSS1) / thyrotropin-releasing hormone receptor binding / modulation by host of viral transcription / meiosis I / Hydrolases; Acting on peptide bonds (peptidases); Omega peptidases / proteasome accessory complex / integrator complex / deubiquitinase activity / regulation of chemotaxis / purine ribonucleoside triphosphate binding / protein K48-linked deubiquitination / proteasome regulatory particle / positive regulation of proteasomal protein catabolic process / cytosolic proteasome complex / proteasome regulatory particle, lid subcomplex / proteasome-activating activity / proteasome regulatory particle, base subcomplex / metal-dependent deubiquitinase activity / negative regulation of programmed cell death / regulation of endopeptidase activity / protein K63-linked deubiquitination / hypothalamus gonadotrophin-releasing hormone neuron development / Homologous DNA Pairing and Strand Exchange / Defective homologous recombination repair (HRR) due to BRCA1 loss of function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function / Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA) / Regulation of ornithine decarboxylase (ODC) / female meiosis I / proteasome core complex / positive regulation of protein monoubiquitination / Resolution of D-loop Structures through Holliday Junction Intermediates / Cross-presentation of soluble exogenous antigens (endosomes) / mitochondrion transport along microtubule / fat pad development / : / K63-linked deubiquitinase activity / Somitogenesis / Impaired BRCA2 binding to RAD51 / endopeptidase inhibitor activity / myofibril / immune system process / proteasome binding / female gonad development / transcription factor binding / seminiferous tubule development / regulation of protein catabolic process / male meiosis I / proteasome storage granule / Presynaptic phase of homologous DNA pairing and strand exchange / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / blastocyst development / general transcription initiation factor binding / polyubiquitin modification-dependent protein binding / NF-kappaB binding / endopeptidase activator activity / protein deubiquitination / proteasome assembly / positive regulation of RNA polymerase II transcription preinitiation complex assembly / proteasome endopeptidase complex / proteasome core complex, beta-subunit complex / proteasome core complex, alpha-subunit complex / threonine-type endopeptidase activity / mRNA export from nucleus / regulation of neuron apoptotic process / negative regulation of ubiquitin-dependent protein catabolic process / enzyme regulator activity / regulation of proteasomal protein catabolic process / SARS-CoV-1 targets host intracellular signalling and regulatory pathways / energy homeostasis / ERAD pathway / inclusion body / Maturation of protein E / Maturation of protein E / ER Quality Control Compartment (ERQC) / Myoclonic epilepsy of Lafora / IRAK2 mediated activation of TAK1 complex / Alpha-protein kinase 1 signaling pathway / FLT3 signaling by CBL mutants / Prevention of phagosomal-lysosomal fusion / IRAK1 recruits IKK complex / IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation / Glycogen synthesis / IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation / TICAM1,TRAF6-dependent induction of TAK1 complex / Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 / Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation / Membrane binding and targetting of GAG proteins / Endosomal Sorting Complex Required For Transport (ESCRT) / Negative regulation of FLT3 / Constitutive Signaling by NOTCH1 HD Domain Mutants / PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 / TICAM1-dependent activation of IRF3/IRF7 / NOTCH2 Activation and Transmission of Signal to the Nucleus / Regulation of FZD by ubiquitination / APC/C:Cdc20 mediated degradation of Cyclin B / p75NTR recruits signalling complexes
Similarity search - Function
Ubiquitin carboxyl-terminal hydrolase 14-like / : / Ubiquitin interaction motif / : / 26S proteasome regulatory subunit RPN7/PSMD6 C-terminal helix / 26S proteasome non-ATPase regulatory subunit Rpn12 / 26S proteasome regulatory subunit, C-terminal / Proteasome regulatory subunit C-terminal / DSS1/SEM1 / 26S proteasome regulatory subunit RPN5, C-terminal domain ...Ubiquitin carboxyl-terminal hydrolase 14-like / : / Ubiquitin interaction motif / : / 26S proteasome regulatory subunit RPN7/PSMD6 C-terminal helix / 26S proteasome non-ATPase regulatory subunit Rpn12 / 26S proteasome regulatory subunit, C-terminal / Proteasome regulatory subunit C-terminal / DSS1/SEM1 / 26S proteasome regulatory subunit RPN5, C-terminal domain / : / : / DSS1/SEM1 family / 26S proteasome regulatory subunit RPN5 C-terminal domain / 26S proteasome subunit RPN2, N-terminal domain / PSD13 N-terminal repeats / DSS1_SEM1 / 26S proteasome regulatory subunit Rpn6, N-terminal / 6S proteasome subunit Rpn6, C-terminal helix domain / 26S proteasome regulatory subunit RPN6 N-terminal domain / 26S proteasome subunit RPN6 C-terminal helix domain / 26S proteasome regulatory complex, non-ATPase subcomplex, Rpn2/Psmd1 subunit / 26S Proteasome non-ATPase regulatory subunit 13 / 26S proteasome regulatory subunit RPN2, C-terminal / 26S proteasome regulatory subunit RPN2 C-terminal domain / 26S Proteasome non-ATPase regulatory subunit 7/8 / 26S proteasome regulatory complex, non-ATPase subcomplex, Rpn1 subunit / RPN1, N-terminal / 26S proteasome non-ATPase regulatory subunit RPN1, C-terminal / : / RPN1 N-terminal domain / 26S proteasome non-ATPase regulatory subunit RPN1 C-terminal / 26S proteasome regulatory subunit 7, OB domain / : / : / PSMD12/CSN4, N-terminal / 26S proteasome regulatory subunit Rpn7/COP9 signalosome complex subunit 1 / 26S proteasome regulatory subunit Rpn7, N-terminal / 26S proteasome subunit RPN7 / 26S Proteasome non-ATPase regulatory subunit 12/COP9 signalosome complex subunit 4 / Proteasome/cyclosome repeat / Proteasome/cyclosome repeat / Ubiquitin-interacting motif. / PCI/PINT associated module / : / von Willebrand factor type A domain / Proteasome subunit alpha 1 / HEAT repeats / Proteasomal ATPase OB C-terminal domain / Proteasomal ATPase OB C-terminal domain / CSN8/PSMD8/EIF3K / CSN8/PSMD8/EIF3K family / Rpn11/EIF3F, C-terminal / Maintenance of mitochondrial structure and function / Ubiquitin specific protease (USP) domain signature 2. / : / Ubiquitin specific protease (USP) domain signature 1. / Ubiquitin specific protease, conserved site / motif in proteasome subunits, Int-6, Nip-1 and TRIP-15 / PCI domain / Proteasome component (PCI) domain / PCI domain profile. / Peptidase C19, ubiquitin carboxyl-terminal hydrolase / Ubiquitin carboxyl-terminal hydrolase / Ubiquitin specific protease domain / Ubiquitin specific protease (USP) domain profile. / Ubiquitin interacting motif / Ubiquitin-interacting motif (UIM) domain profile. / JAB1/Mov34/MPN/PAD-1 ubiquitin protease / Proteasome beta subunit, C-terminal / Proteasome beta subunits C terminal / Proteasome subunit beta 4 / Proteasome subunit beta 2 / Proteasome beta 3 subunit / Proteasome subunit alpha6 / Proteasome subunit alpha5 / Proteasome beta-type subunits signature. / Peptidase T1A, proteasome beta-subunit / Proteasome beta-type subunit, conserved site / Proteasome subunit A N-terminal signature / Proteasome alpha-type subunits signature. / Proteasome alpha-subunit, N-terminal domain / Proteasome subunit A N-terminal signature Add an annotation / von Willebrand factor (vWF) type A domain / : / Proteasome alpha-type subunit / Proteasome alpha-type subunit profile. / VWFA domain profile. / Proteasome B-type subunit / Proteasome beta-type subunit profile. / Proteasome subunit / Proteasome, subunit alpha/beta / von Willebrand factor, type A / AAA ATPase, AAA+ lid domain / AAA+ lid domain / ATPase, AAA-type, conserved site / AAA-protein family signature. / JAB/MPN domain / JAB1/MPN/MOV34 metalloenzyme domain / MPN domain
Similarity search - Domain/homology
26S proteasome non-ATPase regulatory subunit 11 / 26S proteasome non-ATPase regulatory subunit 12 / 26S proteasome non-ATPase regulatory subunit 14 / Proteasome subunit alpha type-7 / 26S proteasome non-ATPase regulatory subunit 3 / Polyubiquitin-B / 26S proteasome regulatory subunit 6A / Proteasome subunit beta type-1 / Proteasome subunit alpha type-1 / Proteasome subunit alpha type-2 ...26S proteasome non-ATPase regulatory subunit 11 / 26S proteasome non-ATPase regulatory subunit 12 / 26S proteasome non-ATPase regulatory subunit 14 / Proteasome subunit alpha type-7 / 26S proteasome non-ATPase regulatory subunit 3 / Polyubiquitin-B / 26S proteasome regulatory subunit 6A / Proteasome subunit beta type-1 / Proteasome subunit alpha type-1 / Proteasome subunit alpha type-2 / Proteasome subunit alpha type-3 / Proteasome subunit alpha type-4 / Proteasome subunit alpha type-5 / Proteasome subunit beta type-4 / Proteasome subunit beta type-6 / Proteasome subunit beta type-5 / 26S proteasome regulatory subunit 7 / 26S proteasome regulatory subunit 6B / 26S proteasome non-ATPase regulatory subunit 8 / Proteasome subunit beta type-3 / Proteasome subunit beta type-2 / 26S proteasome non-ATPase regulatory subunit 7 / Ubiquitin carboxyl-terminal hydrolase 14 / 26S proteasome non-ATPase regulatory subunit 4 / 26S proteasome complex subunit SEM1 / Proteasome subunit alpha type-6 / 26S proteasome regulatory subunit 4 / 26S proteasome regulatory subunit 8 / 26S proteasome regulatory subunit 10B / 26S proteasome non-ATPase regulatory subunit 2 / 26S proteasome non-ATPase regulatory subunit 6 / Proteasome subunit beta type-7 / 26S proteasome non-ATPase regulatory subunit 1 / 26S proteasome non-ATPase regulatory subunit 13
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 4.6 Å
AuthorsHuang XL / Luan B / Wu JP / Shi YG
CitationJournal: Nat Struct Mol Biol / Year: 2016
Title: An atomic structure of the human 26S proteasome.
Authors: Xiuliang Huang / Bai Luan / Jianping Wu / Yigong Shi /
Abstract: We report the cryo-EM structure of the human 26S proteasome at an average resolution of 3.5 Å, allowing atomic modeling of 28 subunits in the core particle (CP) and 18 subunits in the regulatory ...We report the cryo-EM structure of the human 26S proteasome at an average resolution of 3.5 Å, allowing atomic modeling of 28 subunits in the core particle (CP) and 18 subunits in the regulatory particle (RP). The C-terminal residues of Rpt3 and Rpt5 subunits in the RP can be seen inserted into surface pockets formed between adjacent α subunits in the CP. Each of the six Rpt subunits contains a bound nucleotide, and the central gate of the CP α-ring is closed despite RP association. The six pore 1 loops in the Rpt ring are arranged similarly to a spiral staircase along the axial channel of substrate transport, which is constricted by the pore 2 loops. We also determined the cryo-EM structure of the human proteasome bound to the deubiquitinating enzyme USP14 at 4.35-Å resolution. Together, our structures provide a framework for mechanistic understanding of eukaryotic proteasome function.
History
DepositionJul 1, 2016-
Header (metadata) releaseJul 27, 2016-
Map releaseJul 27, 2016-
UpdateDec 13, 2017-
Current statusDec 13, 2017Processing site: PDBj / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.044
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by height
  • Surface level: 0.044
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_9510.map.gz / Format: CCP4 / Size: 83.7 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationRP class2
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.07 Å/pix.
x 280 pix.
= 299.6 Å
1.07 Å/pix.
x 280 pix.
= 299.6 Å
1.07 Å/pix.
x 280 pix.
= 299.6 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.07 Å
Density
Contour LevelBy AUTHOR: 0.044 / Movie #1: 0.044
Minimum - Maximum-0.102109775 - 0.17986521
Average (Standard dev.)0.0015848584 (±0.010668034)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions280280280
Spacing280280280
CellA=B=C: 299.6 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.071.071.07
M x/y/z280280280
origin x/y/z0.0000.0000.000
length x/y/z299.600299.600299.600
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS280280280
D min/max/mean-0.1020.1800.002

-
Supplemental data

-
Sample components

-
Entire : human 26S proteasome

EntireName: human 26S proteasome
Components
  • Complex: human 26S proteasome

-
Supramolecule #1: human 26S proteasome

SupramoleculeName: human 26S proteasome / type: complex / ID: 1 / Parent: 0
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 2.5 MDa

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration1 mg/mL
BufferpH: 8
Component:
ConcentrationFormulaName
25.0 mMTris-HClTris-HCl
150.0 mMNaClsodium chloride
5.0 mMDTTDTT
GridMaterial: COPPER / Support film - Material: CARBON / Support film - topology: CONTINUOUS / Support film - Film thickness: 3.0 nm / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Atmosphere: AIR
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 281 K / Instrument: FEI VITROBOT MARK IV / Details: blot for 2s before plunging.
DetailsThis sample was monodisperse

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
TemperatureMin: 70.0 K
Image recordingFilm or detector model: FEI FALCON II (4k x 4k) / Number real images: 4881 / Average exposure time: 1.6 sec. / Average electron dose: 37.0 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal magnification: 75000
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

+
Image processing

Particle selectionNumber selected: 331338
CTF correctionSoftware - Name: CTFFIND (ver. 3)
Final reconstructionResolution.type: BY AUTHOR / Resolution: 4.6 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: RELION (ver. 1.4) / Number images used: 115306
Initial angle assignmentType: COMMON LINE / Software - Name: RELION (ver. 1.4)
Final angle assignmentType: COMMON LINE / Software - Name: RELION (ver. 1.4)

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more