Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

8WFW

Crystal structure of beta-glucosidase from Thermoanaerobacterium saccharolyticum (Data 4)

Summary for 8WFW
Entry DOI10.2210/pdb8wfw/pdb
DescriptorBeta-glucosidase, 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL, SODIUM ION, ... (4 entities in total)
Functional Keywordsglucosidase, hydrolase
Biological sourceThermoanaerobacterium saccharolyticum
Total number of polymer chains1
Total formula weight51998.26
Authors
Nam, K.H. (deposition date: 2023-09-20, release date: 2023-10-04, Last modification date: 2024-04-17)
Primary citationNam, K.H.
The Conformational Change of the L3 Loop Affects the Structural Changes in the Substrate Binding Pocket Entrance of beta-Glucosidase.
Molecules, 28:-, 2023
Cited by
PubMed Abstract: β-glucosidase (Bgl) hydrolyzes cellobiose to glucose, thereby releasing non-reducing terminal glucosyl residues. Bgl is an essential enzyme belonging to the biomass-degrading enzyme family, which plays a vital role in enzymatic saccharification during biofuel production. The four loops above the Bgl substrate-binding pocket undergo a conformational change upon substrate recognition. However, the structural dynamism of this loop and how it is conserved among Bgl family members remain unknown. Herein, to better understand the four loops above the substrate-binding pocket of Bgl, four Bgl crystal structures in (TsaBgl) were determined at 1.5-2.1 Å. The L1, L2, and L4 loops of TsaBgl showed a rigid conformation stabilized by their neighboring residues via hydrogen bonds and hydrophobic interactions. The TsaBgl L3 loop showed relatively high flexibility and two different N-terminal region conformations. The conformational change in the TsaBgl L3 loop induced a change in charge and shaped at the substrate-binding pocket entrance. The amino acid sequences and structures of the TsaBgl L1-4 loops were compared with other 45 Bgl proteins, and a diversity of the L2 and L3 loops was observed. Differences in amino acids and lengths of Bgls L2-L3 loop induced differences in the conformation and structure of the Bgls substrate-binding pocket entrance. These findings expand our knowledge on the molecular function of the loops in the Bgl enzyme family.
PubMed: 38067537
DOI: 10.3390/molecules28237807
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.61 Å)
Structure validation

226707

건을2024-10-30부터공개중

PDB statisticsPDBj update infoContact PDBjnumon