Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

8S9Q

HIV-1 Integrase Catalytic Core Domain (CCD) F185H Mutant Complexed with STP03-0404

Summary for 8S9Q
Entry DOI10.2210/pdb8s9q/pdb
Related8D3S
DescriptorIntegrase, (2S)-tert-butoxy{4-(4-chlorophenyl)-2,3,6-trimethyl-1-[(1-methyl-1H-pyrazol-4-yl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl}acetic acid (3 entities in total)
Functional Keywordsintegrase, viral protein
Biological sourceHuman immunodeficiency virus 1
Total number of polymer chains1
Total formula weight18416.46
Authors
Dinh, T.,Kvaratskhelia, M. (deposition date: 2023-03-29, release date: 2024-02-07, Last modification date: 2024-10-09)
Primary citationDinh, T.,Tber, Z.,Rey, J.S.,Mengshetti, S.,Annamalai, A.S.,Haney, R.,Briganti, L.,Amblard, F.,Fuchs, J.R.,Cherepanov, P.,Kim, K.,Schinazi, R.F.,Perilla, J.R.,Kim, B.,Kvaratskhelia, M.
The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir.
Biorxiv, 2024
Cited by
PubMed Abstract: Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1 variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCD + PIR complex. Consequently, full-length IN was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1 conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of IN and was ~14-fold more potent against HIV-1 than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.
PubMed: 38328097
DOI: 10.1101/2024.01.26.577387
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.26 Å)
Structure validation

227111

数据于2024-11-06公开中

PDB statisticsPDBj update infoContact PDBjnumon