8HY5
Structure of D-amino acid oxidase mutant R38H
Summary for 8HY5
| Entry DOI | 10.2210/pdb8hy5/pdb |
| Descriptor | D-amino-acid oxidase, FLAVIN-ADENINE DINUCLEOTIDE, BENZOIC ACID, ... (6 entities in total) |
| Functional Keywords | als, amino acid, d-serine, neurodegeneration, schizophrenia, oxidoreductase |
| Biological source | Homo sapiens (human) |
| Total number of polymer chains | 2 |
| Total formula weight | 85825.51 |
| Authors | Khan, S.,Upadhyay, S.,Dave, U.,Kumar, A.,Gomes, J. (deposition date: 2023-01-05, release date: 2023-01-25, Last modification date: 2024-01-10) |
| Primary citation | Khan, S.,Upadhyay, S.,Dave, U.,Kumar, A.,Gomes, J. Structural and mechanistic insights into ALS patient derived mutations in D-amino acid oxidase. Int.J.Biol.Macromol., 256:128403-128403, 2023 Cited by PubMed Abstract: The D-amino acid oxidase protein modulates neurotransmission by controlling the levels of D-serine, a co-agonist of N-methyl-D-aspartate receptors. Mutations in the DAO gene have been associated with ALS, with some studies reporting pathogenic mechanisms of the R199W mutation. We have characterized two novel mutations R38H and Q201R found in ALS patients and report certain novel findings related to the R199W mutation. We report the first instance of crystal structure analysis of a patient-derived mutant of DAO, R38H, solved at 2.10 Å. The structure revealed significant perturbations and altered binding with the cofactor (FAD) and the inhibitor benzoate, supported by biochemical assays. Q201R-DAO also exhibited significantly lower ligand binding efficiency. Furthermore, kinetic analysis across all variants revealed reduced oxidase activity and substrate binding. Notably, R38H-DAO exhibited near-WT activity only at high substrate concentrations, while R199W-DAO and Q201R-DAO displayed drastic activity reduction. Additionally, structural perturbations were inferred for R199W-DAO and Q201R-DAO, evident by the higher oligomeric state in the holoenzyme form. We also observed thermal instability in case of R199W-DAO mutant. We hypothesize that the mutant enzymes may be rendered non-functional in a cellular context, potentially leading to NMDAR-associated excitotoxicity. The study provides novel insights into structural and functional aspects of DAO mutations in ALS. PubMed: 38035964DOI: 10.1016/j.ijbiomac.2023.128403 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (2.1 Å) |
Structure validation
Download full validation report






