8F4X
Top-down design of protein architectures with reinforcement learning
8F4X の概要
エントリーDOI | 10.2210/pdb8f4x/pdb |
EMDBエントリー | 28858 |
分子名称 | RC_I_1-H11 (1 entity in total) |
機能のキーワード | nanoparticle, capsid, oligomer, de novo design, rosetta, cryoem, de novo protein, reinforcement learning |
由来する生物種 | synthetic construct |
タンパク質・核酸の鎖数 | 60 |
化学式量合計 | 465897.72 |
構造登録者 | |
主引用文献 | Lutz, I.D.,Wang, S.,Norn, C.,Courbet, A.,Borst, A.J.,Zhao, Y.T.,Dosey, A.,Cao, L.,Xu, J.,Leaf, E.M.,Treichel, C.,Litvicov, P.,Li, Z.,Goodson, A.D.,Rivera-Sanchez, P.,Bratovianu, A.M.,Baek, M.,King, N.P.,Ruohola-Baker, H.,Baker, D. Top-down design of protein architectures with reinforcement learning. Science, 380:266-273, 2023 Cited by PubMed Abstract: As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a "top-down" reinforcement learning-based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo-electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design. PubMed: 37079676DOI: 10.1126/science.adf6591 主引用文献が同じPDBエントリー |
実験手法 | ELECTRON MICROSCOPY (3.01 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
