Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

8CHB

Inward-facing conformation of the ABC transporter BmrA C436S/A582C cross-linked mutant

Summary for 8CHB
Entry DOI10.2210/pdb8chb/pdb
Related8QOE
EMDB information16659
DescriptorMultidrug resistance ABC transporter ATP-binding/permease protein BmrA (1 entity in total)
Functional Keywordsabc transporter, drug efflux pump, homodimer, membrane protein, antibiotic resistance
Biological sourceBacillus subtilis
Total number of polymer chains2
Total formula weight132681.67
Authors
Di Cesare, M.,Kaplan, E.,Hanssen, E.,Valimehr, S.,Orelle, C.,Jault, J.M. (deposition date: 2023-02-07, release date: 2023-12-20, Last modification date: 2024-10-23)
Primary citationDi Cesare, M.,Kaplan, E.,Rendon, J.,Gerbaud, G.,Valimehr, S.,Gobet, A.,Ngo, T.T.,Chaptal, V.,Falson, P.,Martinho, M.,Dorlet, P.,Hanssen, E.,Jault, J.M.,Orelle, C.
The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains.
J.Biol.Chem., 300:105546-105546, 2023
Cited by
PubMed Abstract: ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.
PubMed: 38072053
DOI: 10.1016/j.jbc.2023.105546
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (3.14 Å)
Structure validation

238895

건을2025-07-16부터공개중

PDB statisticsPDBj update infoContact PDBjnumon