Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

8VU7

Wheat Germ Agglutinin (WGA) domain C

Summary for 8VU7
Entry DOI10.2210/pdb8vu7/pdb
NMR InformationBMRB: 31142
DescriptorAgglutinin isolectin 1 (1 entity in total)
Functional Keywordslectin, mutidomain protein, structural stability, sugar binding protein
Biological sourceTriticum aestivum (bread wheat)
Total number of polymer chains1
Total formula weight4440.05
Authors
Melchor-Meneses, C.M.,del Rio-Portilla, F.,Garcia-Hernandez, E. (deposition date: 2024-01-29, release date: 2024-06-05, Last modification date: 2024-10-23)
Primary citationMedrano-Cerano, J.L.,Cofas-Vargas, L.F.,Leyva, E.,Rauda-Ceja, J.A.,Calderon-Vargas, M.,Cano-Sanchez, P.,Titaux-Delgado, G.,Melchor-Meneses, C.M.,Hernandez-Arana, A.,Del Rio-Portilla, F.,Garcia-Hernandez, E.
Decoding the mechanism governing the structural stability of wheat germ agglutinin and its isolated domains: A combined calorimetric, NMR, and MD simulation study.
Protein Sci., 33:e5020-e5020, 2024
Cited by
PubMed Abstract: Wheat germ agglutinin (WGA) demonstrates potential as an oral delivery agent owing to its selective binding to carbohydrates and its capacity to traverse biological membranes. In this study, we employed differential scanning calorimetry and molecular dynamics simulations to comprehensively characterize the thermal unfolding process of both the complete lectin and its four isolated domains. Furthermore, we present the nuclear magnetic resonance structures of three domains that were previously lacking experimental structures in their isolated forms. Our results provide a collective understanding of the energetic and structural factors governing the intricate unfolding mechanism of the complete agglutinin, shedding light on the specific role played by each domain in this process. The analysis revealed negligible interdomain cooperativity, highlighting instead significant coupling between dimer dissociation and the unfolding of the more labile domains. By comparing the dominant interactions, we rationalized the stability differences among the domains. Understanding the structural stability of WGA opens avenues for enhanced drug delivery strategies, underscoring its potential as a promising carrier throughout the gastrointestinal environment.
PubMed: 38747397
DOI: 10.1002/pro.5020
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

234785

PDB entries from 2025-04-16

PDB statisticsPDBj update infoContact PDBjnumon