7VPB
Crystal structure of a novel hydrolase in apo form
Summary for 7VPB
Entry DOI | 10.2210/pdb7vpb/pdb |
Descriptor | plastic degrading hydrolase Ple629, ACETATE ION, 4-(2-hydroxyethylcarbamoyl)benzoic acid, ... (4 entities in total) |
Functional Keywords | plastic degradation, hydrolase |
Biological source | unclassified Marinobacter |
Total number of polymer chains | 2 |
Total formula weight | 60909.74 |
Authors | |
Primary citation | Li, Z.,Zhao, Y.,Wu, P.,Wang, H.,Li, Q.,Gao, J.,Qin, H.M.,Wei, H.,Bornscheuer, U.T.,Han, X.,Wei, R.,Liu, W. Structural insight and engineering of a plastic degrading hydrolase Ple629. Biochem.Biophys.Res.Commun., 626:100-106, 2022 Cited by PubMed Abstract: Polyethylene terephthalate (PET) is one of the most abundantly produced synthetic polyesters. The vast number of waste plastics including PET has challenged the waste management sector while also posing a serious threat to the environment due to improper littering. Recently, enzymatic PET degradation has been shown to be a viable option for a circular plastic economy, which can mitigate the plastic pollution. While protein engineering studies on specific PET degradation enzymes such as leaf-branch compost cutinase (LCC), Thermobifida sp. cutinases and Ideonella sakaiensis PETase (IsPETase) have been extensively published, other homologous PET degrading enzymes have received less attention. Ple629 is a polyester hydrolase identified from marine microbial consortium having activity on PET and the bioplastic polybutylene adipate terephthalate (PBAT). In order to explore its catalytic mechanism and improve its potential for PET hydrolysis, we solved its crystal structure in complex with a PET monomer analogue, and validated its structural and mechanistic similarity to known PET hydrolases. By structural comparisons, we identified some hot spot positions described in previous research on protein engineering of PET hydrolases. We substitute these amino acid residues in Ple629, and obtained variants with improved activity and thermo-stability. The most promising variant D226A/S279A exhibited a more than 5.5-fold improved activity on PET nanoparticles than the wild-type enzyme, suggesting its potential applicability in the biotechnological plastic recycling. PubMed: 35981419DOI: 10.1016/j.bbrc.2022.07.103 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.68 Å) |
Structure validation
Download full validation report