7RHP
Crystal Structure of Honeybee (Apis mellifera) glutathione S-transferase AmGSTD1
Summary for 7RHP
Entry DOI | 10.2210/pdb7rhp/pdb |
Descriptor | Glutathione S-transferase AmGSTD1, GLUTATHIONE (3 entities in total) |
Functional Keywords | glutathione s-transferase, gsh, delta, honeybee, apis mellifera, complex, transferase |
Biological source | Apis mellifera (Honeybee) |
Total number of polymer chains | 1 |
Total formula weight | 29639.06 |
Authors | Moural, T.W.,Zhu, F. (deposition date: 2021-07-18, release date: 2022-11-09, Last modification date: 2024-01-17) |
Primary citation | Moural, T.W.,Koirala B K, S.,Bhattarai, G.,He, Z.,Guo, H.,Phan, N.T.,Rajotte, E.G.,Biddinger, D.J.,Hoover, K.,Zhu, F. Architecture and potential roles of a delta-class glutathione S-transferase in protecting honey bee from agrochemicals. Chemosphere, 350:141089-141089, 2023 Cited by PubMed Abstract: The European honey bee, Apis mellifera, serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobiotic adaptation of A. mellifera is critical, considering its extensive exposure to phytochemicals and agrochemicals present in the environment. In this study, we conducted a comprehensive structural and functional characterization of AmGSTD1, a delta class glutathione S-transferase (GST), to unravel its roles in agrochemical detoxification and antioxidative stress responses. We determined the 3-dimensional (3D) structure of a honey bee GST using protein crystallography for the first time, providing new insights into its molecular structure. Our investigations revealed that AmGSTD1 metabolizes model substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrophenyl acetate (PNA), phenylethyl isothiocyanate (PEITC), propyl isothiocyanate (PITC), and the oxidation byproduct 4-hydroxynonenal (HNE). Moreover, we discovered that AmGSTD1 exhibits binding affinity with the fluorophore 8-Anilinonaphthalene-1-sulfonic acid (ANS), which can be inhibited with various herbicides, fungicides, insecticides, and their metabolites. These findings highlight the potential contribution of AmGSTD1 in safeguarding honey bee health against various agrochemicals, while also mitigating oxidative stress resulting from exposure to these substances. PubMed: 38163465DOI: 10.1016/j.chemosphere.2023.141089 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.54 Å) |
Structure validation
Download full validation report