7DV8
The crystal structure of rice immune receptor RGA5-HMA2.
7DV8 の概要
| エントリーDOI | 10.2210/pdb7dv8/pdb |
| 分子名称 | Disease resistance protein RGA5 (2 entities in total) |
| 機能のキーワード | immune receptor, plant protein |
| 由来する生物種 | Oryza sativa subsp. japonica (Rice) |
| タンパク質・核酸の鎖数 | 14 |
| 化学式量合計 | 110719.10 |
| 構造登録者 | |
| 主引用文献 | Liu, Y.,Zhang, X.,Yuan, G.,Wang, D.,Zheng, Y.,Ma, M.,Guo, L.,Bhadauria, V.,Peng, Y.L.,Liu, J. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc.Natl.Acad.Sci.USA, 118:-, 2021 Cited by PubMed Abstract: Plant nucleotide-binding and leucine-rich repeat (NLR) receptors recognize avirulence effectors directly through their integrated domains (IDs) or indirectly via the effector-targeted proteins. Previous studies have succeeded in generating designer NLR receptors with new recognition profiles by engineering IDs or targeted proteins based on prior knowledge of their interactions with the effectors. However, it is yet a challenge to design a new plant receptor capable of recognizing effectors that function by unknown mechanisms. Several rice NLR immune receptors, including RGA5, possess an integrated heavy metal-associated (HMA) domain that recognizes corresponding Avrs and ToxB-like (MAX) effectors in the rice blast fungus. Here, we report a designer rice NLR receptor RGA5 carrying an engineered, integrated HMA domain (RGA5-HMA2) that can recognize the noncorresponding MAX effector AvrPib and confers the RGA4-dependent resistance to the isolates expressing AvrPib, which originally triggers the Pib-mediated blast resistance via unknown mechanisms. The RGA5-HMA2 domain is contrived based on the high structural similarity of AvrPib with two MAX effectors, AVR-Pia and AVR1-CO39, recognized by cognate RGA5-HMA, the binding interface between AVR1-CO39 and RGA5-HMA, and the distinct surface charge of AvrPib and RAG5-HMA. This work demonstrates that rice NLR receptors with the HMA domain can be engineered to confer resistance to the isolates noncorresponding but structurally similar MAX effectors, which manifest cognate NLR receptor-mediated resistance with unknown mechanisms. Our study also provides a practical approach for developing rice multilines and broad race spectrum-resistant cultivars by introducing a series of engineered NLR receptors. PubMed: 34702740DOI: 10.1073/pnas.2110751118 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (2.447 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






