Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

7PSJ

Crystal structure of beta-glucuronidase from Acidobacterium capsulatum in complex with covalent inhibitor VL166

Summary for 7PSJ
Entry DOI10.2210/pdb7psj/pdb
DescriptorBeta-glucuronidase, 2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-4)-(2R,3S,5R,6R)-2,3,4,5,6-pentakis(oxidanyl)cyclohexane-1-carboxylic acid (3 entities in total)
Functional Keywordsglycoside hydrolase, carbohydrate, glucuronidase, gh79, heparan sulfate
Biological sourceAcidobacterium capsulatum (strain ATCC 51196 / DSM 11244 / JCM 7670 / NBRC 15755 / NCIMB 13165 / 161)
Total number of polymer chains1
Total formula weight51225.92
Authors
Armstrong, Z.,Wu, L.,Davies, G.J. (deposition date: 2021-09-23, release date: 2022-08-03, Last modification date: 2024-11-13)
Primary citationde Boer, C.,Armstrong, Z.,Lit, V.A.J.,Barash, U.,Ruijgrok, G.,Boyango, I.,Weitzenberg, M.M.,Schroder, S.P.,Sarris, A.J.C.,Meeuwenoord, N.J.,Bule, P.,Kayal, Y.,Ilan, N.,Codee, J.D.C.,Vlodavsky, I.,Overkleeft, H.S.,Davies, G.J.,Wu, L.
Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo.
Proc.Natl.Acad.Sci.USA, 119:e2203167119-e2203167119, 2022
Cited by
PubMed Abstract: Heparan sulfate proteoglycans (HSPGs) mediate essential interactions throughout the extracellular matrix (ECM), providing signals that regulate cellular growth and development. Altered HSPG composition during tumorigenesis strongly aids cancer progression. Heparanase (HPSE) is the principal enzyme responsible for extracellular heparan sulfate catabolism and is markedly up-regulated in aggressive cancers. HPSE overactivity degrades HSPGs within the ECM, facilitating metastatic dissemination and releasing mitogens that drive cellular proliferation. Reducing extracellular HPSE activity reduces cancer growth, but few effective inhibitors are known, and none are clinically approved. Inspired by the natural glycosidase inhibitor cyclophellitol, we developed nanomolar mechanism-based, irreversible HPSE inhibitors that are effective within physiological environments. Application of cyclophellitol-derived HPSE inhibitors reduces cancer aggression in cellulo and significantly ameliorates murine metastasis. Mechanism-based irreversible HPSE inhibition is an unexplored anticancer strategy. We demonstrate the feasibility of such compounds to control pathological HPSE-driven malignancies.
PubMed: 35881786
DOI: 10.1073/pnas.2203167119
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.55 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon