6X5N
Crystal structure of a stabilized PAN ENE bimolecular triplex with a GC-clamped polyA tail, in complex with Fab-BL-3,6
6X5N の概要
エントリーDOI | 10.2210/pdb6x5n/pdb |
分子名称 | Light chain Fab BL-3 6, Heavy chain Fab Bl-3 6, ggPAN RNA (39-MER), ... (6 entities in total) |
機能のキーワード | viral encoded rna, rna therapeutics, structure-function studies, small molecules binding, pan triplex, ggene, ggca9, rna, immune system-rna complex, immune system/rna |
由来する生物種 | Mus musculus 詳細 |
タンパク質・核酸の鎖数 | 8 |
化学式量合計 | 152041.16 |
構造登録者 | |
主引用文献 | Swain, M.,Ageeli, A.A.,Kasprzak, W.K.,Li, M.,Miller, J.T.,Sztuba-Solinska, J.,Schneekloth, J.S.,Koirala, D.,Piccirili, J.,Fraboni, A.J.,Murelli, R.P.,Wlodawer, A.,Shapiro, B.A.,Baird, N.,Le Grice, S.F.J. Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands. Nucleic Acids Res., 49:13179-13193, 2021 Cited by PubMed Abstract: Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules. PubMed: 34871450DOI: 10.1093/nar/gkab1170 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (3.3 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
