Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6W8S

Crystal structure of metacaspase 4 from Arabidopsis

Summary for 6W8S
Entry DOI10.2210/pdb6w8s/pdb
DescriptorMetacaspase-4, SULFATE ION (2 entities in total)
Functional Keywordsmetacaspase, protease, ca2+-dependent activation, wild-type, plant immunity, plant protein, hydrolase
Biological sourceArabidopsis thaliana (Mouse-ear cress)
Total number of polymer chains4
Total formula weight187155.74
Authors
Zhu, P.,Yu, X.H.,Wang, C.,Zhang, Q.,Liu, W.,McSweeney, S.,Shanklin, J.,Lam, E.,Liu, Q. (deposition date: 2020-03-21, release date: 2020-05-20, Last modification date: 2023-10-18)
Primary citationZhu, P.,Yu, X.H.,Wang, C.,Zhang, Q.,Liu, W.,McSweeney, S.,Shanklin, J.,Lam, E.,Liu, Q.
Structural basis for Ca2+-dependent activation of a plant metacaspase.
Nat Commun, 11:2249-2249, 2020
Cited by
PubMed Abstract: Plant metacaspases mediate programmed cell death in development, biotic and abiotic stresses, damage-induced immune response, and resistance to pathogen attack. Most metacaspases require Ca for their activation and substrate processing. However, the Ca-dependent activation mechanism remains elusive. Here we report the crystal structures of Metacaspase 4 from Arabidopsis thaliana (AtMC4) that modulates Ca-dependent, damage-induced plant immune defense. The AtMC4 structure exhibits an inhibitory conformation in which a large linker domain blocks activation and substrate access. In addition, the side chain of Lys225 in the linker domain blocks the active site by sitting directly between two catalytic residues. We show that the activation of AtMC4 and cleavage of its physiological substrate involve multiple cleavages in the linker domain upon activation by Ca. Our analysis provides insight into the Ca-dependent activation of AtMC4 and lays the basis for tuning its activity in response to stresses for engineering of more sustainable crops for food and biofuels.
PubMed: 32382010
DOI: 10.1038/s41467-020-15830-8
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.484 Å)
Structure validation

226707

数据于2024-10-30公开中

PDB statisticsPDBj update infoContact PDBjnumon