Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6W75

1.95 Angstrom Resolution Crystal Structure of NSP10 - NSP16 Complex from SARS-CoV-2

Summary for 6W75
Entry DOI10.2210/pdb6w75/pdb
Related6W4H
Descriptor2'-O-methyltransferase, Non-structural protein 10, SODIUM ION, ... (7 entities in total)
Functional Keywordsstructural genomics, center for structural genomics of infectious diseases, csgid, nsp16, nsp10, complex, viral protein
Biological sourceSevere acute respiratory syndrome coronavirus 2 (2019-nCoV)
More
Total number of polymer chains4
Total formula weight99545.33
Authors
Primary citationRosas-Lemus, M.,Minasov, G.,Shuvalova, L.,Inniss, N.L.,Kiryukhina, O.,Brunzelle, J.,Satchell, K.J.F.
High-resolution structures of the SARS-CoV-2 2'- O -methyltransferase reveal strategies for structure-based inhibitor design.
Sci.Signal., 13:-, 2020
Cited by
PubMed Abstract: There are currently no antiviral therapies specific for SARS-CoV-2, the virus responsible for the global pandemic disease COVID-19. To facilitate structure-based drug design, we conducted an x-ray crystallographic study of the SARS-CoV-2 nsp16-nsp10 2'--methyltransferase complex, which methylates Cap-0 viral mRNAs to improve viral protein translation and to avoid host immune detection. We determined the structures for nsp16-nsp10 heterodimers bound to the methyl donor -adenosylmethionine (SAM), the reaction product -adenosylhomocysteine (SAH), or the SAH analog sinefungin (SFG). We also solved structures for nsp16-nsp10 in complex with the methylated Cap-0 analog mGpppA and either SAM or SAH. Comparative analyses between these structures and published structures for nsp16 from other betacoronaviruses revealed flexible loops in open and closed conformations at the mGpppA-binding pocket. Bound sulfates in several of the structures suggested the location of the ribonucleic acid backbone phosphates in the ribonucleotide-binding groove. Additional nucleotide-binding sites were found on the face of the protein opposite the active site. These various sites and the conserved dimer interface could be exploited for the development of antiviral inhibitors.
PubMed: 32994211
DOI: 10.1126/scisignal.abe1202
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.951 Å)
Structure validation

226707

数据于2024-10-30公开中

PDB statisticsPDBj update infoContact PDBjnumon