6VEB
Precorrin-2-bound S128A S. typhimurium siroheme synthase
6VEB の概要
エントリーDOI | 10.2210/pdb6veb/pdb |
分子名称 | Siroheme synthase, S-ADENOSYL-L-HOMOCYSTEINE, NICOTINAMIDE-ADENINE-DINUCLEOTIDE, ... (6 entities in total) |
機能のキーワード | tetrapyrrole biosynthesis, cysg, transferase |
由来する生物種 | Salmonella enterica I |
タンパク質・核酸の鎖数 | 2 |
化学式量合計 | 102926.27 |
構造登録者 | |
主引用文献 | Pennington, J.M.,Kemp, M.,McGarry, L.,Chen, Y.,Stroupe, M.E. Siroheme synthase orients substrates for dehydrogenase and chelatase activities in a common active site. Nat Commun, 11:864-864, 2020 Cited by PubMed Abstract: Siroheme is the central cofactor in a conserved class of sulfite and nitrite reductases that catalyze the six-electron reduction of sulfite to sulfide and nitrite to ammonia. In Salmonella enterica serovar Typhimurium, siroheme is produced by a trifunctional enzyme, siroheme synthase (CysG). A bifunctional active site that is distinct from its methyltransferase activity catalyzes the final two steps, NAD-dependent dehydrogenation and iron chelation. How this active site performs such different chemistries is unknown. Here, we report the structures of CysG bound to precorrin-2, the initial substrate; sirohydrochlorin, the dehydrogenation product/chelation substrate; and a cobalt-sirohydrochlorin product. We identified binding poses for all three tetrapyrroles and tested the roles of specific amino acids in both activities to give insights into how a bifunctional active site catalyzes two different chemistries and acts as an iron-specific chelatase in the final step of siroheme synthesis. PubMed: 32054833DOI: 10.1038/s41467-020-14722-1 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2.55 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード