6SLE
Structure of Reductive Aminase from Neosartorya fumigata in complex with NADP+
Summary for 6SLE
Entry DOI | 10.2210/pdb6sle/pdb |
Descriptor | Oxidoreductase, putative, NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (3 entities in total) |
Functional Keywords | amine, imine, nadph, oxidoreductase |
Biological source | Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) |
Total number of polymer chains | 8 |
Total formula weight | 246230.11 |
Authors | Sharma, M.,Mangas-Sanchez, J.,Turner, N.J.,Grogan, G. (deposition date: 2019-08-19, release date: 2020-06-24, Last modification date: 2024-01-24) |
Primary citation | Mangas-Sanchez, J.,Sharma, M.,Cosgrove, S.C.,Ramsden, J.I.,Marshall, J.R.,Thorpe, T.W.,Palmer, R.B.,Grogan, G.,Turner, N.J. Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases. Chem Sci, 11:5052-5057, 2020 Cited by PubMed Abstract: Chiral primary amines are important intermediates in the synthesis of pharmaceutical compounds. Fungal reductive aminases (RedAms) are NADPH-dependent dehydrogenases that catalyse reductive amination of a range of ketones with short-chain primary amines supplied in an equimolar ratio to give corresponding secondary amines. Herein we describe structural and biochemical characterisation as well as synthetic applications of two RedAms from spp. (RedAm and RedAm) that display a distinctive activity amongst fungal RedAms, namely a superior ability to use ammonia as the amine partner. Using these enzymes, we demonstrate the synthesis of a broad range of primary amines, with conversions up to >97% and excellent enantiomeric excess. Temperature dependent studies showed that these homologues also possess greater thermal stability compared to other enzymes within this family. Their synthetic applicability is further demonstrated by the production of several primary and secondary amines with turnover numbers (TN) up to 14 000 as well as continous flow reactions, obtaining chiral amines such as ()-2-aminohexane in space time yields up to 8.1 g L h. The remarkable features of RedAm RedAm highlight their potential for wider synthetic application as well as expanding the biocatalytic toolbox available for chiral amine synthesis. PubMed: 34122962DOI: 10.1039/d0sc02253e PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.77 Å) |
Structure validation
Download full validation report
