Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6QNS

Crystal structure of the binding domain of Botulinum Neurotoxin type B mutant I1248W/V1249W in complex with human synaptotagmin 1 and GD1a receptors

Summary for 6QNS
Entry DOI10.2210/pdb6qns/pdb
DescriptorBotulinum neurotoxin type B, Synaptotagmin-1, N-acetyl-alpha-neuraminic acid-(2-3)-beta-D-galactopyranose-(1-3)-2-acetamido-2-deoxy-beta-D-galactopyranose-(1-4)-[N-acetyl-alpha-neuraminic acid-(2-3)]beta-D-galactopyranose-(1-4)-beta-D-glucopyranose, ... (4 entities in total)
Functional Keywordsbotulinum toxin, toxin
Biological sourceClostridium botulinum
More
Total number of polymer chains2
Total formula weight56948.79
Authors
Masuyer, G.,Yin, L.,Zhang, S.,Miyashita, S.I.,Dong, M.,Stenmark, P. (deposition date: 2019-02-12, release date: 2020-02-26, Last modification date: 2024-01-24)
Primary citationYin, L.,Masuyer, G.,Zhang, S.,Zhang, J.,Miyashita, S.I.,Burgin, D.,Lovelock, L.,Coker, S.F.,Fu, T.M.,Stenmark, P.,Dong, M.
Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy.
Plos Biol., 18:e3000618-e3000618, 2020
Cited by
PubMed Abstract: Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A-G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a "gain-of-function" mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL-lipid interactions and create a modified BoNT/B with improved therapeutic efficacy.
PubMed: 32182233
DOI: 10.1371/journal.pbio.3000618
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.4 Å)
Structure validation

226707

數據於2024-10-30公開中

PDB statisticsPDBj update infoContact PDBjnumon