Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6NAV

Cryo-EM reconstruction of Sulfolobus islandicus LAL14/1 Pilus

Summary for 6NAV
Entry DOI10.2210/pdb6nav/pdb
EMDB information0397
DescriptorM9UD72 (1 entity in total)
Functional Keywordshelical symmetry, archaeal pilus, structural protein
Biological sourceSulfolobus islandicus LAL14/1
Total number of polymer chains21
Total formula weight266308.88
Authors
Wang, F.,Cvirkaite-Krupovic, V.,Prangishvili, D.,Krupovic, M.,Egelman, E.H. (deposition date: 2018-12-06, release date: 2019-05-08, Last modification date: 2024-03-20)
Primary citationWang, F.,Cvirkaite-Krupovic, V.,Kreutzberger, M.A.B.,Su, Z.,de Oliveira, G.A.P.,Osinski, T.,Sherman, N.,DiMaio, F.,Wall, J.S.,Prangishvili, D.,Krupovic, M.,Egelman, E.H.
An extensively glycosylated archaeal pilus survives extreme conditions.
Nat Microbiol, 4:1401-1410, 2019
Cited by
PubMed Abstract: Pili on the surface of Sulfolobus islandicus are used for many functions, and serve as receptors for certain archaeal viruses. The cells grow optimally at pH 3 and ~80 °C, exposing these extracellular appendages to a very harsh environment. The pili, when removed from cells, resist digestion by trypsin or pepsin, and survive boiling in sodium dodecyl sulfate or 5 M guanidine hydrochloride. We used electron cryo-microscopy to determine the structure of these filaments at 4.1 Å resolution. An atomic model was built by combining the electron density map with bioinformatics without previous knowledge of the pilin sequence-an approach that should prove useful for assemblies where all of the components are not known. The atomic structure of the pilus was unusual, with almost one-third of the residues being either threonine or serine, and with many hydrophobic surface residues. While the map showed extra density consistent with glycosylation for only three residues, mass measurements suggested extensive glycosylation. We propose that this extensive glycosylation renders these filaments soluble and provides the remarkable structural stability. We also show that the overall fold of the archaeal pilin is remarkably similar to that of archaeal flagellin, establishing common evolutionary origins.
PubMed: 31110358
DOI: 10.1038/s41564-019-0458-x
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (4.1 Å)
Structure validation

236060

数据于2025-05-14公开中

PDB statisticsPDBj update infoContact PDBjnumon