Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6MKS

Cryo-EM structure of NLRC4-CARD filament

Summary for 6MKS
Entry DOI10.2210/pdb6mks/pdb
EMDB information9137
DescriptorChimera protein of NLR family CARD domain-containing protein 4 and EGFP (1 entity in total)
Functional Keywordsnlrc4, helical assembly, inflammasome, protein fibril
Biological sourceHomo sapiens (Human)
More
Total number of polymer chains31
Total formula weight1198732.96
Authors
Zheng, W.,Matyszewski, M.,Sohn, J.,Egelman, E.H. (deposition date: 2018-09-26, release date: 2018-11-07, Last modification date: 2024-03-13)
Primary citationMatyszewski, M.,Zheng, W.,Lueck, J.,Antiochos, B.,Egelman, E.H.,Sohn, J.
Cryo-EM structure of the NLRC4CARDfilament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly.
J. Biol. Chem., 293:20240-20248, 2018
Cited by
PubMed Abstract: Inflammasomes are supramolecular signaling platforms integral to innate immune defense against invading pathogens. The NOD-like receptor (NLR) family apoptosis inhibitory protein (NAIP)·NLR family caspase-recruiting domain (CARD) domain-containing 4 (NLRC4) inflammasome recognizes intracellular bacteria and induces the polymerization of the caspase-1 protease, which in turn executes maturation of interleukin-1β (IL-1β) and pyroptosis. Several high-resolution structures of the fully assembled NAIP·NLRC4 complex are available, but these structures do not resolve the architecture of the CARD filament in atomic detail. Here, we present the cryo-EM structure of the filament assembled by the CARD of human NLRC4 (NLRC4) at 3.4 Å resolution. The structure revealed that the helical architecture of the NLRC4 filament is essentially identical to that of the downstream filament assembled by the CARD of caspase-1 (casp1), but deviates from the split washer-like assembly of the NAIP·NLRC4 oligomer. Our results suggest that architectural complementarity is a major driver for the recognition between upstream and downstream CARD assemblies in inflammasomes. Furthermore, a Monte Carlo simulation of the NLRC4 filament assembly rationalized why an (un)decameric NLRC4 oligomer is optimal for assembling the helical base of the NLRC4 filament. Together, our results explain how symmetric and asymmetric supramolecular assemblies enable high-fidelity signaling in inflammasomes.
PubMed: 30385506
DOI: 10.1074/jbc.RA118.006050
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (3.4 Å)
Structure validation

227111

数据于2024-11-06公开中

PDB statisticsPDBj update infoContact PDBjnumon