6LXL
Crystal structure of C-terminal DNA-binding domain of Escherichia coli OmpR
6LXL の概要
エントリーDOI | 10.2210/pdb6lxl/pdb |
分子名称 | Transcriptional regulatory protein OmpR (1 entity in total) |
機能のキーワード | dna binding protein transcription factor, transcription, dna binding protein |
由来する生物種 | Escherichia coli |
タンパク質・核酸の鎖数 | 1 |
化学式量合計 | 13099.09 |
構造登録者 | |
主引用文献 | Sadotra, S.,Lou, Y.C.,Tang, H.C.,Chiu, Y.C.,Hsu, C.H.,Chen, C. Structural basis for promoter DNA recognition by the response regulator OmpR. J.Struct.Biol., 213:107638-107638, 2020 Cited by PubMed Abstract: OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR-DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc-DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this "druggable" target. PubMed: 33152421DOI: 10.1016/j.jsb.2020.107638 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (3.56 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード