6KIQ
Complex of yeast cytoplasmic dynein MTBD-High and MT with DTT
Summary for 6KIQ
Entry DOI | 10.2210/pdb6kiq/pdb |
EMDB information | 9996 9997 |
Descriptor | Alpha tubulin, Tubulin beta chain, Dynein heavy chain, cytoplasmic (3 entities in total) |
Functional Keywords | dynein, microtubule, motor protein-structural protein complex, motor protein/structural protein |
Biological source | Saccharomyces cerevisiae S288c (Baker's yeast) More |
Total number of polymer chains | 3 |
Total formula weight | 109034.29 |
Authors | Komori, Y.,Nishida, N.,Shimada, I.,Kikkawa, M. (deposition date: 2019-07-19, release date: 2020-03-04, Last modification date: 2024-03-27) |
Primary citation | Nishida, N.,Komori, Y.,Takarada, O.,Watanabe, A.,Tamura, S.,Kubo, S.,Shimada, I.,Kikkawa, M. Structural basis for two-way communication between dynein and microtubules. Nat Commun, 11:1038-1038, 2020 Cited by PubMed Abstract: The movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain via a coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulate MTBD either in high-affinity or low-affinity states by introducing a disulfide bond to the stalk and analyze the resulting structures by NMR and cryo-EM. In the MT-unbound state, the affinity changes of MTBD are achieved by sliding of the stalk α-helix by a half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, MT binding induces further sliding of the stalk α-helix even without the disulfide bond, suggesting how the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high- and low-affinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks. PubMed: 32098965DOI: 10.1038/s41467-020-14842-8 PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (3.62 Å) |
Structure validation
Download full validation report