6JAQ
Crystal structure of ABC transporter alpha-glycoside-binding mutant protein R356A in complex with glucose
6JAQ の概要
エントリーDOI | 10.2210/pdb6jaq/pdb |
分子名称 | ABC transporter, periplasmic substrate-binding protein, alpha-D-glucopyranose, CITRIC ACID, ... (6 entities in total) |
機能のキーワード | carbohydrate-bindingsite, alpha-glycoside-binding protein, ligand selection, multi-substrate transporter, sugar replacement, venus fly-trap mechanism, sugar binding protein |
由来する生物種 | Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579) |
タンパク質・核酸の鎖数 | 1 |
化学式量合計 | 46762.49 |
構造登録者 | |
主引用文献 | Chandravanshi, M.,Gogoi, P.,Kanaujia, S.P. Structural and thermodynamic correlation illuminates the selective transport mechanism of disaccharide alpha-glycosides through ABC transporter. Febs J., 287:1576-1597, 2020 Cited by PubMed Abstract: Carbohydrate (or sugar) molecules are extremely diverse regarding their length, linkage and epimeric state. Selective acquisition of these molecules inside the cell is achieved by the substrate (or solute)-binding protein of ATP-binding cassette (ABC) transport system. However, the molecular mechanism underlying the selective transport of diverse carbohydrates remains unclear mainly owing to their structural complexity and stereochemistry. This study reports crystal structures of an α-glycoside-binding protein (αGlyBP, ORF ID: TTHA0356 from Thermus thermophilus HB8) in complex with disaccharide α-glycosides namely trehalose (α-1,1), sucrose (α-1,2), maltose (α-1,4), palatinose (α-1,6) and glucose within a resolution range of 1.6-2.0 Å. Despite transporting multiple types of sugars, αGlyBP maintains its stereoselectivity for both glycosidic linkage as well as an epimeric hydroxyl group. Out of the two subsites identified in the active-site pocket, subsite B which accommodates the glucose and glycosyl unit of disaccharide α-glycosides is highly conserved. In addition, structural data confirms the paradoxical behavior of glucose, where it replaces the high-affinity ligand(s) (disaccharide α-glycosides) from the active site of the protein. Comparative assessment of open and closed conformations of αGlyBP along with mutagenic and thermodynamic studies identifies the hinge region as the first interaction site for the ligands. On the other hand, encapsulation of ligand inside the active site is achieved through the N-terminal domain (NTD) movement, whereas the C-terminal domain (CTD) of αGlyBP is identified to be rigid and postulated to be responsible for maintaining the interaction with the transmembrane domain (TMD) during substrate translocation. DATABASE: Structural data are available in RCSB Protein Data Bank under the accession number(s) 6J9W, 6J9Y, 6JAD, 6JAG, 6JAH, 6JAI, 6JAL, 6JAM, 6JAN, 6JAO, 6JAP, 6JAQ, 6JAR, 6JAZ, 6JB0, 6JB4, 6JBA, 6JBB and 6JBE. PubMed: 31608555DOI: 10.1111/febs.15093 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.95 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード