Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6GHR

cyanobacterial GAPDH with full-length CP12

Summary for 6GHR
Entry DOI10.2210/pdb6ghr/pdb
DescriptorGlyceraldehyde-3-phosphate dehydrogenase, CP12 polypeptide, NICOTINAMIDE-ADENINE-DINUCLEOTIDE, ... (5 entities in total)
Functional Keywordscalvin cycle, regulation, photosynthesis
Biological sourceThermosynechococcus elongatus
More
Total number of polymer chains6
Total formula weight174283.08
Authors
McFarlane, C.R.,Murray, J.W. (deposition date: 2018-05-08, release date: 2019-05-08, Last modification date: 2024-11-13)
Primary citationMcFarlane, C.R.,Shah, N.R.,Kabasakal, B.V.,Echeverria, B.,Cotton, C.A.R.,Bubeck, D.,Murray, J.W.
Structural basis of light-induced redox regulation in the Calvin-Benson cycle in cyanobacteria.
Proc.Natl.Acad.Sci.USA, 116:20984-20990, 2019
Cited by
PubMed Abstract: Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin-Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.
PubMed: 31570616
DOI: 10.1073/pnas.1906722116
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.249 Å)
Structure validation

227344

数据于2024-11-13公开中

PDB statisticsPDBj update infoContact PDBjnumon