Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6A4J

Crystal structure of Thioredoxin reductase 2 from Staphylococcus aureus

Replaces:  5ZBV
Summary for 6A4J
Entry DOI10.2210/pdb6a4j/pdb
DescriptorFerredoxin--NADP reductase, FLAVIN-ADENINE DINUCLEOTIDE (2 entities in total)
Functional Keywordsflavoenzyme, oxidoreductase
Biological sourceStaphylococcus aureus
Total number of polymer chains2
Total formula weight78148.16
Authors
Bose, M.,Bhattacharyya, S.,Ghosh, A.K.,Das, A.K. (deposition date: 2018-06-20, release date: 2018-07-11, Last modification date: 2024-10-30)
Primary citationBose, M.,Bhattacharyya, S.,Biswas, R.,Roychowdhury, A.,Bhattacharjee, A.,Ghosh, A.K.,Das, A.K.
Elucidation of the mechanism of disulfide exchange between staphylococcal thioredoxin2 and thioredoxin reductase2: A structural insight.
Biochimie, 160:1-13, 2019
Cited by
PubMed Abstract: The redox homeostasis of cytoplasm is maintained by a series of disulfide exchange reactions mediated by proteins belonging to the thioredoxin superfamily. Thioredoxin and thioredoxin reductase, being the major members of the family, play a key role in oxidative stress response of Staphylococcus aureus. In this report, we have identified and characterised an active thioredoxin system of the mentioned pathogen. Crystal structure of thioredoxin2 (SaTrx2) in its reduced form reveals that it contains the conserved redox active WCXXC motif and a thioredoxin fold. Thioredoxin reductase2 (SaTR2) is a flavoprotein and consists of two Rossmann folds as the binding sites for FAD and NADPH. Crystal structure of the SaTR2 holoenzyme shows that the protein consists of two domains and the catalytic site comprises of an intramolecular disulfide bond formed between two sequentially distal cysteine residues. Biophysical and biochemical studies unveil that SaTrx2 and SaTR2 can physically interact in solution and in the course of sustaining the redox equilibrium, the latter reduces the former. Molecular docking has been performed to illustrate the interface formed between SaTrx2 and SaTR2 during the disulfide exchange reaction.
PubMed: 30710560
DOI: 10.1016/j.biochi.2019.01.019
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.4 Å)
Structure validation

237735

数据于2025-06-18公开中

PDB statisticsPDBj update infoContact PDBjnumon