Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6EYT

Crystal structure of the Salmonella effector SseK3 in complex with UDP-GlcNAc and Manganese

Summary for 6EYT
Entry DOI10.2210/pdb6eyt/pdb
DescriptorType III secretion system effector protein, IODIDE ION, MANGANESE (II) ION, ... (6 entities in total)
Functional Keywordsglycosyltransferase, glcnac, effector protein, toxin
Biological sourceSalmonella typhimurium
Total number of polymer chains2
Total formula weight75511.63
Authors
Esposito, D.,Rittinger, K. (deposition date: 2017-11-13, release date: 2018-02-28, Last modification date: 2024-05-08)
Primary citationEsposito, D.,Gunster, R.A.,Martino, L.,El Omari, K.,Wagner, A.,Thurston, T.L.M.,Rittinger, K.
Structural basis for the glycosyltransferase activity of theSalmonellaeffector SseK3.
J. Biol. Chem., 293:5064-5078, 2018
Cited by
PubMed Abstract: The -secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an -acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating DD motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free -acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine -glycosylation reaction. Homology models of SseK1, SseK2, and the orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine -glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors.
PubMed: 29449376
DOI: 10.1074/jbc.RA118.001796
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.21 Å)
Structure validation

226707

PDB entries from 2024-10-30

PDB statisticsPDBj update infoContact PDBjnumon