Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5ZHO

Human group C rotavirus VP8*s recognize type A histo-blood group antigens as ligands

Summary for 5ZHO
Entry DOI10.2210/pdb5zho/pdb
DescriptorOuter capsid protein VP8*, alpha-L-fucopyranose-(1-2)-[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-3)]alpha-D-galactopyranose (3 entities in total)
Functional Keywordsgroup c rotavirus, vp8*, galactin-like, histo-blood group antigen, viral protein
Biological sourceHuman rotavirus C
Total number of polymer chains1
Total formula weight19268.32
Authors
Sun, X.,Duan, Z.,Qi, J. (deposition date: 2018-03-13, release date: 2018-04-11, Last modification date: 2023-11-22)
Primary citationSun, X.,Wang, L.,Qi, J.,Li, D.,Wang, M.,Cong, X.,Peng, R.,Chai, W.,Zhang, Q.,Wang, H.,Wen, H.,Gao, G.F.,Tan, M.,Duan, Z.
Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands.
J. Virol., 92:-, 2018
Cited by
PubMed Abstract: Group/species C rotaviruses (RVCs) have been identified as important pathogens of acute gastroenteritis (AGE) in children, family-based outbreaks, as well as animal infections. However, little is known regarding their host-specific interaction, infection, and pathogenesis. In this study, we performed serial studies to characterize the function and structural features of a human G4P[2] RVC VP8* that is responsible for the host receptor interaction. Glycan microarrays demonstrated that the human RVC VP8* recognizes type A histo-blood group antigens (HBGAs), which was confirmed by synthetic glycan-/saliva-based binding assays and hemagglutination of red blood cells, establishing a paradigm of RVC VP8*-glycan interactions. Furthermore, the high-resolution crystal structure of the human RVC VP8* was solved, showing a typical galectin-like structure consisting of two β-sheets but with significant differences from cogent proteins of group A rotaviruses (RVAs). The VP8* in complex with a type A trisaccharide displays a novel ligand binding site that consists of a particular set of amino acid residues of the C-D, G-H, and K-L loops. RVC VP8* interacts with type A HBGAs through a unique mechanism compared with that used by RVAs. Our findings shed light on the host-virus interaction and the coevolution of RVCs and will facilitate the development of specific antivirals and vaccines. Group/species C rotaviruses (RVCs), members of family, infect both humans and animals, but our knowledge about the host factors that control host susceptibility and specificity is rudimentary. In this work, we characterized the glycan binding specificity and structural basis of a human RVC that recognizes type A HBGAs. We found that human RVC VP8*, the rotavirus host ligand binding domain that shares only ∼15% homology with the VP8* domains of RVAs, recognizes type A HBGA at an as-yet-unknown glycan binding site through a mechanism distinct from that used by RVAs. Our new advancements provide insights into RVC-cell attachment, the critical step of virus infection, which will in turn help the development of control and prevention strategies against RVs.
PubMed: 29593033
DOI: 10.1128/JVI.00442-18
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.401 Å)
Structure validation

226707

數據於2024-10-30公開中

PDB statisticsPDBj update infoContact PDBjnumon