Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5Z5B

Crystal structure of Tk-PTP in the G95A mutant form

Summary for 5Z5B
Entry DOI10.2210/pdb5z5b/pdb
DescriptorProtein-tyrosine phosphatase, CHLORIDE ION, FORMIC ACID (3 entities in total)
Functional Keywordstyrosine phosphatase, hydrolase
Biological sourceThermococcus kodakarensis KOD1
Total number of polymer chains3
Total formula weight55763.92
Authors
Ku, B.,Yun, H.Y.,Kim, S.J. (deposition date: 2018-01-17, release date: 2018-06-27, Last modification date: 2023-11-22)
Primary citationYun, H.Y.,Lee, J.,Kim, H.,Ryu, H.,Shin, H.C.,Oh, B.H.,Ku, B.,Kim, S.J.
Structural study reveals the temperature-dependent conformational flexibility of Tk-PTP, a protein tyrosine phosphatase from Thermococcus kodakaraensis KOD1
PLoS ONE, 13:e0197635-e0197635, 2018
Cited by
PubMed Abstract: Protein tyrosine phosphatases (PTPs) originating from eukaryotes or bacteria have been under intensive structural and biochemical investigation, whereas archaeal PTP proteins have not been investigated extensively; therefore, they are poorly understood. Here, we present the crystal structures of Tk-PTP derived from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, in both the active and inactive forms. Tk-PTP adopts a common dual-specificity phosphatase (DUSP) fold, but it undergoes an atypical temperature-dependent conformational change in its P-loop and α4-α5 loop regions, switching between the inactive and active forms. Through comprehensive analyses of Tk-PTP, including additional structural determination of the G95A mutant form, enzymatic activity assays, and structural comparison with the other archaeal PTP, it was revealed that the presence of the GG motif in the P-loop is necessary but not sufficient for the structural flexibility of Tk-PTP. It was also proven that Tk-PTP contains dual general acid/base residues unlike most of the other DUSP proteins, and that both the residues are critical in its phosphatase activity. This work provides the basis for expanding our understanding of the previously uncharacterized PTP proteins from archaea, the third domain of living organisms.
PubMed: 29791483
DOI: 10.1371/journal.pone.0197635
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.3 Å)
Structure validation

227111

数据于2024-11-06公开中

PDB statisticsPDBj update infoContact PDBjnumon