5TZL
Structure of transthyretin in complex with the kinetic stabilizer 201
5TZL の概要
| エントリーDOI | 10.2210/pdb5tzl/pdb |
| 分子名称 | Transthyretin, 4-(7-chloro-1,3-benzoxazol-2-yl)-2,6-diiodophenol (3 entities in total) |
| 機能のキーワード | transthyretin, kinetic stabilizer, transport protein |
| 由来する生物種 | Homo sapiens (Human) |
| タンパク質・核酸の鎖数 | 2 |
| 化学式量合計 | 28645.63 |
| 構造登録者 | Connelly, S.,Mortenson, D.E.,Choi, S.,Wilson, I.A.,Powers, E.T.,Kelly, J.W.,Johnson, S.M. (登録日: 2016-11-21, 公開日: 2017-06-28, 最終更新日: 2023-11-15) |
| 主引用文献 | Connelly, S.,Mortenson, D.E.,Choi, S.,Wilson, I.A.,Powers, E.T.,Kelly, J.W.,Johnson, S.M. Semi-quantitative models for identifying potent and selective transthyretin amyloidogenesis inhibitors. Bioorg. Med. Chem. Lett., 27:3441-3449, 2017 Cited by PubMed Abstract: Rate-limiting dissociation of the tetrameric protein transthyretin (TTR), followed by monomer misfolding and misassembly, appears to cause degenerative diseases in humans known as the transthyretin amyloidoses, based on human genetic, biochemical and pharmacologic evidence. Small molecules that bind to the generally unoccupied thyroxine binding pockets in the native TTR tetramer kinetically stabilize the tetramer, slowing subunit dissociation proportional to the extent that the molecules stabilize the native state over the dissociative transition state-thereby inhibiting amyloidogenesis. Herein, we use previously reported structure-activity relationship data to develop two semi-quantitative algorithms for identifying the structures of potent and selective transthyretin kinetic stabilizers/amyloidogenesis inhibitors. The viability of these prediction algorithms, in particular the more robust in silico docking model, is perhaps best validated by the clinical success of tafamidis, the first-in-class drug approved in Europe, Japan, South America, and elsewhere for treating transthyretin aggregation-associated familial amyloid polyneuropathy. Tafamidis is also being evaluated in a fully-enrolled placebo-controlled clinical trial for its efficacy against TTR cardiomyopathy. These prediction algorithms will be useful for identifying second generation TTR kinetic stabilizers, should these be needed to ameliorate the central nervous system or ophthalmologic pathology caused by TTR aggregation in organs not accessed by oral tafamidis administration. PubMed: 28625364DOI: 10.1016/j.bmcl.2017.05.080 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (1.4 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






