Loading
PDBj
メニューPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5NHB

Crystal structure of xylose isomerase from Piromyces E2 in complex with two Fe2+ ions

5NHB の概要
エントリーDOI10.2210/pdb5nhb/pdb
関連するPDBエントリー5NH5
分子名称Xylose isomerase, FE (II) ION, SULFATE ION, ... (4 entities in total)
機能のキーワードisomerase, tim-barrel
由来する生物種Piromyces sp. E2
タンパク質・核酸の鎖数4
化学式量合計198569.64
構造登録者
Rozeboom, H.J.,Janssen, D.B. (登録日: 2017-03-21, 公開日: 2017-11-01, 最終更新日: 2024-05-01)
主引用文献Lee, M.,Rozeboom, H.J.,de Waal, P.P.,de Jong, R.M.,Dudek, H.M.,Janssen, D.B.
Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography.
Biochemistry, 56:5991-6005, 2017
Cited by
PubMed Abstract: Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn, which was established by measuring the activation constants (K) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity.
PubMed: 29045784
DOI: 10.1021/acs.biochem.7b00777
主引用文献が同じPDBエントリー
実験手法
X-RAY DIFFRACTION (2.4 Å)
構造検証レポート
Validation report summary of 5nhb
検証レポート(詳細版)ダウンロードをダウンロード

227111

件を2024-11-06に公開中

PDB statisticsPDBj update infoContact PDBjnumon