Loading
PDBj
メニューPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5IFT

STRUCTURE OF E298Q-BETA-GALACTOSIDASE FROM ASPERGILLUS NIGER IN COMPLEX WITH 3-b-Galactopyranosyl glucose

5IFT の概要
エントリーDOI10.2210/pdb5ift/pdb
関連するPDBエントリー5IFP
分子名称Probable beta-galactosidase A, alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose, alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose, ... (10 entities in total)
機能のキーワードtim barrel, gh35, glycoside hydrolase, kinetics, protein conformation, carbohydrate metabolism, b-galactosidase, aspergillus niger, fungal protein, substrate specificity, prebiotics, galactooligosaccharides, gos, recombinant, 3-o-beta-d-galactopyranosyl-d-glucose, 3-b-galactopyranosyl glucose, 3-gal-glu, hydrolase
由来する生物種Aspergillus niger CBS 513.88
細胞内の位置Secreted : A2QAN3
タンパク質・核酸の鎖数1
化学式量合計116044.35
構造登録者
Rico-Diaz, A.,Ramirez-Escudero, M.,Vizoso Vazquez, A.,Cerdan, M.E.,Becerra, M.,Sanz-Aparicio, J. (登録日: 2016-02-26, 公開日: 2017-04-19, 最終更新日: 2024-01-10)
主引用文献Rico-Diaz, A.,Ramirez-Escudero, M.,Vizoso-Vazquez, A.,Cerdan, M.E.,Becerra, M.,Sanz-Aparicio, J.
Structural features of Aspergillus niger beta-galactosidase define its activity against glycoside linkages.
FEBS J., 284:1815-1829, 2017
Cited by
PubMed Abstract: β-Galactosidases are biotechnologically interesting enzymes that catalyze the hydrolysis or transgalactosylation of β-galactosides. Among them, the Aspergillus niger β-galactosidase (AnβGal) belongs to the glycoside hydrolase family 35 (GH35) and is widely used in the industry due to its high hydrolytic activity which is used to degrade lactose. We present here its three-dimensional structure in complex with different oligosaccharides, to illustrate the structural determinants of the broad specificity of the enzyme against different glycoside linkages. Remarkably, the residues Phe264, Tyr304, and Trp806 make a dynamic hydrophobic platform that accommodates the sugar at subsite +1 suggesting a main role on the recognition of structurally different substrates. Moreover, complexes with the trisaccharides show two potential subsites +2 depending on the substrate type. This feature and the peculiar shape of its wide cavity suggest that AnβGal might accommodate branched substrates from the complex net of polysaccharides composing the plant material in its natural environment. Relevant residues were selected and mutagenesis analyses were performed to evaluate their role in the catalytic performance and the hydrolase/transferase ratio of AnβGal. Thus, we generated mutants with improved transgalactosylation activity. In particular, the variant Y304F/Y355H/N357G/W806F displays a higher level of galacto-oligosaccharides production than the Aspergillus oryzae β-galactosidase, which is the preferred enzyme in the industry owing to its high transferase activity. Our results provide new knowledge on the determinants modulating specificity and the catalytic performance of fungal GH35 β-galactosidases. In turn, this fundamental background gives novel tools for the future improvement of these enzymes, which represent an interesting target for rational design.
PubMed: 28391618
DOI: 10.1111/febs.14083
主引用文献が同じPDBエントリー
実験手法
X-RAY DIFFRACTION (2.45 Å)
構造検証レポート
Validation report summary of 5ift
検証レポート(詳細版)ダウンロードをダウンロード

227111

件を2024-11-06に公開中

PDB statisticsPDBj update infoContact PDBjnumon