5HO1
MamB-CTD
5HO1 の概要
エントリーDOI | 10.2210/pdb5ho1/pdb |
分子名称 | Magnetosome protein MamB, ZINC ION (3 entities in total) |
機能のキーワード | c-terminal domain, magnetotactic bacteria, metallochaperone like domain, cation diffusion facilitator, metal-binding site, signaling protein |
由来する生物種 | Magnetospira sp. QH-2 |
タンパク質・核酸の鎖数 | 2 |
化学式量合計 | 22965.66 |
構造登録者 | |
主引用文献 | Uebe, R.,Keren-Khadmy, N.,Zeytuni, N.,Katzmann, E.,Navon, Y.,Davidov, G.,Bitton, R.,Plitzko, J.M.,Schuler, D.,Zarivach, R. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol., 107:542-557, 2018 Cited by PubMed Abstract: Magnetospirillum gryphiswaldense MSR-1 synthesizes membrane-enclosed magnetite (Fe O ) nanoparticles, magnetosomes, for magnetotaxis. Formation of these organelles involves a complex process comprising key steps which are governed by specific magnetosome-associated proteins. MamB, a cation diffusion facilitator (CDF) family member has been implicated in magnetosome-directed iron transport. However, deletion mutagenesis studies revealed that MamB is essential for the formation of magnetosome membrane vesicles, but its precise role remains elusive. In this study, we employed a multi-disciplinary approach to define the role of MamB during magnetosome formation. Using site-directed mutagenesis complemented by structural analyses, fluorescence microscopy and cryo-electron tomography, we show that MamB is most likely an active magnetosome-directed transporter serving two distinct, yet essential functions. First, MamB initiates magnetosome vesicle formation in a transport-independent process, probably by serving as a landmark protein. Second, MamB transport activity is required for magnetite nucleation. Furthermore, by determining the crystal structure of the MamB cytosolic C-terminal domain, we also provide mechanistic insight into transport regulation. Additionally, we present evidence that magnetosome vesicle growth and chain formation are independent of magnetite nucleation and magnetic interactions respectively. Together, our data provide novel insight into the role of the key bifunctional magnetosome protein MamB, and the early steps of magnetosome formation. PubMed: 29243866DOI: 10.1111/mmi.13899 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2.53 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード