Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5DYH

Ti(IV) bound human serum transferrin

Summary for 5DYH
Entry DOI10.2210/pdb5dyh/pdb
DescriptorSerotransferrin, CITRIC ACID, TITANIUM ION, ... (4 entities in total)
Functional Keywordssynergistic ion complex, metal transport
Biological sourceHomo sapiens (Human)
Total number of polymer chains2
Total formula weight156664.99
Authors
Saxena, M.,Sharma, S.,Noinaj, N.,Parks, T.B.,Tinoco, A.D. (deposition date: 2015-09-24, release date: 2016-04-27, Last modification date: 2024-10-23)
Primary citationTinoco, A.D.,Saxena, M.,Sharma, S.,Noinaj, N.,Delgado, Y.,Quinones Gonzalez, E.P.,Conklin, S.E.,Zambrana, N.,Loza-Rosas, S.A.,Parks, T.B.
Unusual Synergism of Transferrin and Citrate in the Regulation of Ti(IV) Speciation, Transport, and Toxicity.
J.Am.Chem.Soc., 138:5659-5665, 2016
Cited by
PubMed Abstract: Human serum transferrin (sTf) is a protein that mediates the transport of iron from blood to cells. Assisted by the synergistic anion carbonate, sTf transports Fe(III) by binding the metal ion in a closed conformation. Previous studies suggest sTf's role as a potential transporter of other metals such as titanium. Ti is a widely used metal in colorants, foods, and implants. A substantial amount of Ti is leached into blood from these implants. However, the fate of the leached Ti and its transport into the cells is not known. Understanding Ti interaction with sTf assumes a greater significance with our ever increasing exposure to Ti in the form of implants. On the basis of in vitro studies, it was speculated that transferrin can bind Ti(IV) assisted by a synergistic anion. However, the role and identity of the synergistic anion(s) and the conformational state in which sTf binds Ti(IV) are not known. Here we have solved the first X-ray crystal structure of a Ti(IV)-bound sTf. We find that sTf binds Ti(IV) in an open conformation with both carbonate and citrate as synergistic anions at the metal binding sites, an unprecedented role for citrate. Studies with cell lines suggest that Ti(IV)-sTf is transported into cells and that sTf and citrate regulate the metal's blood speciation and attenuate its cytotoxic property. Our results provide the first glimpse into the citrate-transferrin synergism in the regulation of Ti(IV) bioactivity and offers insight into the future design of Ti(IV)-based anticancer drugs.
PubMed: 27070073
DOI: 10.1021/jacs.6b01966
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.682 Å)
Structure validation

238268

数据于2025-07-02公开中

PDB statisticsPDBj update infoContact PDBjnumon