Loading
PDBj
メニューPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

4ZU2

Pseudomonas aeruginosa AtuE

4ZU2 の概要
エントリーDOI10.2210/pdb4zu2/pdb
分子名称Putative isohexenylglutaconyl-CoA hydratase, IODIDE ION (3 entities in total)
機能のキーワードterpenes, crotonase, hydrolase
由来する生物種Pseudomonas aeruginosa
タンパク質・核酸の鎖数3
化学式量合計87939.04
構造登録者
Poudel, N.,Pfannstiel, J.,Simon, O.,Walter, N.,Jendrossek, D.,Papageorgiou, A.C. (登録日: 2015-05-15, 公開日: 2015-07-22, 最終更新日: 2024-01-10)
主引用文献Poudel, N.,Pfannstiel, J.,Simon, O.,Walter, N.,Papageorgiou, A.C.,Jendrossek, D.
The Pseudomonas aeruginosa Isohexenyl Glutaconyl Coenzyme A Hydratase (AtuE) Is Upregulated in Citronellate-Grown Cells and Belongs to the Crotonase Family.
Appl.Environ.Microbiol., 81:6558-6566, 2015
Cited by
PubMed Abstract: Pseudomonas aeruginosa is one of only a few Pseudomonas species that are able to use acyclic monoterpenoids, such as citronellol and citronellate, as carbon and energy sources. This is achieved by the acyclic terpene utilization pathway (Atu), which includes at least six enzymes (AtuA, AtuB, AtuCF, AtuD, AtuE, AtuG) and is coupled to a functional leucine-isovalerate utilization (Liu) pathway. Here, quantitative proteome analysis was performed to elucidate the terpene metabolism of P. aeruginosa. The proteomics survey identified 187 proteins, including AtuA to AtuG and LiuA to LiuE, which were increased in abundance in the presence of citronellate. In particular, two hydratases, AtuE and the PA4330 gene product, out of more than a dozen predicted in the P. aeruginosa proteome showed an increased abundance in the presence of citronellate. AtuE (isohexenyl-glutaconyl coenzyme A [CoA] hydratase; EC 4.2.1.57) most likely catalyzes the hydration of the unsaturated distal double bond in the isohexenyl-glutaconyl-CoA thioester to yield 3-hydroxy-3-isohexenyl-glutaryl-CoA. Determination of the crystal structure of AtuE at a 2.13-Å resolution revealed a fold similar to that found in the hydratase (crotonase) superfamily and provided insights into the nature of the active site. The AtuE active-site architecture showed a significantly broader cavity than other crotonase superfamily members, in agreement with the need to accommodate the branched isoprenoid unit of terpenes. Glu139 was identified to be a potential catalytic residue, while the backbone NH groups of Gly116 and Gly68 likely form an oxyanion hole. The present work deepens the understanding of terpene metabolism in Pseudomonas and may serve as a basis to develop new strategies for the biotechnological production of terpenoids.
PubMed: 26162879
DOI: 10.1128/AEM.01686-15
主引用文献が同じPDBエントリー
実験手法
X-RAY DIFFRACTION (2.15 Å)
構造検証レポート
Validation report summary of 4zu2
検証レポート(詳細版)ダウンロードをダウンロード

227111

件を2024-11-06に公開中

PDB statisticsPDBj update infoContact PDBjnumon